-
Notifications
You must be signed in to change notification settings - Fork 40
/
train-nmt.lua
443 lines (413 loc) · 16.4 KB
/
train-nmt.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
require 'nn'
require 'nngraph'
require 'hdf5'
require 'data-nmt.lua'
require 'models/models-nmt.lua'
require 'models/model_utils.lua'
cmd = torch.CmdLine()
-- data files
cmd:text("")
cmd:text("**Data options**")
cmd:text("")
cmd:option('-data_file','data/nmt-train.hdf5', [[Path to the training *.hdf5 file from preprocess.py]])
cmd:option('-val_data_file','data/nmt-val.hdf5', [[Path to validation *.hdf5 file from preprocess.py]])
cmd:option('-savefile', 'nmt', [[Savefile name (model will be saved as
savefile_epochX_PPL.t7 where X is the X-th epoch and PPL is
the validation perplexity]])
cmd:option('-train_from', '', [[If training from a checkpoint then this is the path to the pretrained model.]])
-- rnn model specs
cmd:text("")
cmd:text("**Model options**")
cmd:text("")
cmd:option('-num_layers', 2, [[Number of layers in the LSTM encoder/decoder]])
cmd:option('-rnn_size', 500, [[Size of LSTM hidden states]])
cmd:option('-word_vec_size', 500, [[Word embedding sizes]])
cmd:option('-attn', 'softmax', [[Attention type: one of {softmax, sigmoid, crf}]])
cmd:option('-lambda', 2, '[[Normalization lambda for marginals if using structured (i.e. crf) attention]]')
cmd:option('-lambda2', 0.005, '[[L2 penalty for CRF bias terms for structured attention]]')
cmd:text("")
cmd:text("**Optimization options**")
cmd:text("")
-- optimization
cmd:option('-epochs', 30, [[Number of training epochs]])
cmd:option('-param_init', 0.1, [[Parameters are initialized over uniform distribution with support (-param_init, param_init)]])
cmd:option('-optim', 'sgd', [[Optimization method. Possible options are: sgd (vanilla SGD), adagrad, adadelta, adam]])
cmd:option('-learning_rate', 1, [[Starting learning rate. If adagrad/adadelta/adam is used,
then this is the global learning rate. Recommended settings: sgd =1,
adagrad = 0.1, adadelta = 1, adam = 0.1]])
cmd:option('-max_grad_norm', 1, [[If the norm of the gradient vector exceeds this renormalize it to have the norm equal to max_grad_norm]])
cmd:option('-dropout', 0.3, [[Dropout probability. Dropout is applied between vertical LSTM stacks.]])
cmd:option('-start_decay', 0, [[Dropout probability. Dropout is applied between vertical LSTM stacks.]])
cmd:option('-lr_decay', 0.5, [[Decay learning rate by this much if (i) perplexity does not decrease
on the validation set or (ii) epoch has gone past the start_decay_at_limit]])
cmd:option('-max_batch_l', 128, [[If blank, then it will infer the max batch size from validation
data. You should only use this if your validation set uses a different
batch size in the preprocessing step]])
cmd:text("")
cmd:text("**Other options**")
cmd:text("")
cmd:option('-start_symbol', 0, [[Use special start-of-sentence and end-of-sentence tokens
on the source side. We've found this to make minimal difference]])
-- GPU
cmd:option('-gpuid', 1, [[Which gpu to use. -1 = use CPU]])
-- bookkeeping
cmd:option('-print_every', 100, [[Print stats after this many batches]])
cmd:option('-seed', 3435, [[Seed for random initialization]])
cmd:option('-prealloc', 1, [[Use memory preallocation and sharing between cloned encoder/decoders]])
function zero_table(t)
for i = 1, #t do
t[i]:zero()
end
end
function train(train_data, valid_data)
local timer = torch.Timer()
local num_params = 0
local start_decay = 0
params, grad_params = {}, {}
if opt.train_from:len() == 0 then
opt.train_perf = {}
opt.val_perf = {}
end
for i = 1, #layers do
local p, gp = layers[i]:getParameters()
if opt.train_from:len() == 0 then
p:uniform(-opt.param_init, opt.param_init)
end
num_params = num_params + p:size(1)
params[i] = p
grad_params[i] = gp
end
print("Number of parameters: " .. num_params)
word_vec_layers[1].weight[1]:zero()
word_vec_layers[2].weight[1]:zero()
-- prototypes for gradients so there is no need to clone
context_proto = torch.zeros(opt.max_batch_l, opt.max_sent_l, opt.rnn_size)
context_grad_proto = torch.zeros(opt.max_batch_l, opt.max_sent_l, opt.rnn_size)
-- clone encoder/decoder up to max source/target length
decoder_clones = clone_many_times(decoder, opt.max_sent_l_targ)
encoder_clones = clone_many_times(encoder, opt.max_sent_l_src)
for i = 1, opt.max_sent_l_src do
if encoder_clones[i].apply then
encoder_clones[i]:apply(function(m) m:setReuse() end)
if opt.prealloc == 1 then encoder_clones[i]:apply(function(m) m:setPrealloc() end) end
end
end
for i = 1, opt.max_sent_l_targ do
if decoder_clones[i].apply then
decoder_clones[i]:apply(function(m) m:setReuse() end)
if opt.prealloc == 1 then decoder_clones[i]:apply(function(m) m:setPrealloc() end) end
end
end
local h_init = torch.zeros(opt.max_batch_l, opt.rnn_size)
if opt.gpuid >= 0 then
h_init = h_init:cuda()
cutorch.setDevice(opt.gpuid)
context_proto = context_proto:cuda()
context_grad_proto = context_grad_proto:cuda()
end
-- these are initial states of encoder/decoder for fwd/bwd steps
init_layer_enc = {}
init_layer_dec = {}
init_layer_enc_bwd = {}
init_layer_dec_bwd = {}
for L = 1, opt.num_layers do
table.insert(init_layer_enc, h_init:clone())
table.insert(init_layer_enc, h_init:clone())
table.insert(init_layer_dec, h_init:clone())
table.insert(init_layer_dec, h_init:clone())
table.insert(init_layer_enc_bwd, h_init:clone())
table.insert(init_layer_enc_bwd, h_init:clone())
table.insert(init_layer_dec_bwd, h_init:clone())
table.insert(init_layer_dec_bwd, h_init:clone())
end
function reset_state(state, batch_l, t)
if t == nil then
local u = {}
for i = 1, #state do
state[i]:zero()
table.insert(u, state[i][{{1, batch_l}}])
end
return u
else
local u = {[t] = {}}
for i = 1, #state do
state[i]:zero()
table.insert(u[t], state[i][{{1, batch_l}}])
end
return u
end
end
-- decay learning rate if val perf does not improve or we hit the opt.start_decay_at limit
function decay_lr(epoch)
print(opt.val_perf)
if opt.val_perf[#opt.val_perf] ~= nil and opt.val_perf[#opt.val_perf-1] ~= nil then
local curr_ppl = opt.val_perf[#opt.val_perf]
local prev_ppl = opt.val_perf[#opt.val_perf-1]
if curr_ppl > prev_ppl then
opt.start_decay = 1
else
local savefile = string.format('%s.t7', opt.savefile)
print('saving ' .. savefile)
torch.save(savefile, {layers, opt})
end
else
local savefile = string.format('%s.t7', opt.savefile)
print('saving ' .. savefile)
torch.save(savefile, {layers, opt})
end
if opt.start_decay == 1 then
opt.learning_rate = opt.learning_rate * opt.lr_decay
end
end
function train_batch(data, epoch)
local train_nonzeros = 0
local train_loss = 0
local batch_order = torch.randperm(data.length) -- shuffle mini batch order
local start_time = timer:time().real
local num_words_target = 0
local num_words_source = 0
for i = 1, data:size() do
zero_table(grad_params, 'zero')
local d = data[batch_order[i]]
local target, target_out, nonzeros, source = d[1], d[2], d[3], d[4]
local batch_l, target_l, source_l = d[5], d[6], d[7]
local context = context_proto[{{1, batch_l}, {1, source_l}}]
local context_grads = context_grad_proto[{{1, batch_l}, {1, source_l}}]:zero()
local rnn_state_enc = reset_state(init_layer_enc, batch_l, 0)
local encoder_inputs = {}
-- forward prop encoder
for t = 1, source_l do
encoder_clones[t]:training()
encoder_inputs[t] = {source[t], table.unpack(rnn_state_enc[t-1])}
rnn_state_enc[t] = encoder_clones[t]:forward(encoder_inputs[t])
context[{{},t}]:copy(rnn_state_enc[t][#rnn_state_enc[t]])
end
-- copy encoder last hidden state to decoder initial state
local rnn_state_dec = reset_state(init_layer_dec, batch_l, 0)
-- forward prop decoder
local decoder_inputs = {}
for t = 1, target_l do
decoder_clones[t]:training()
decoder_inputs[t] = {target[t], table.unpack(rnn_state_dec[t-1])}
rnn_state_dec[t] = decoder_clones[t]:forward(decoder_inputs[t])
end
if opt.attn == 'crf' then
all_layers.crf.gradWeight:add(all_layers.crf.weight):mul(opt.lambda2)
end
-- backward prop decoder
local drnn_state_dec = reset_state(init_layer_dec_bwd, batch_l)
local loss = 0
for t = target_l, 1, -1 do
local generator_input = {context, rnn_state_dec[t][#rnn_state_dec[t]]}
local pred = generator:forward(generator_input)
loss = loss + criterion:forward(pred, target_out[t])/batch_l
local dl_dpred = criterion:backward(pred, target_out[t])
dl_dpred:div(batch_l)
local dl_dtarget = generator:backward(generator_input, dl_dpred)
drnn_state_dec[#drnn_state_dec]:add(dl_dtarget[2])
context_grads:add(dl_dtarget[1])
local dlst = decoder_clones[t]:backward(decoder_inputs[t], drnn_state_dec)
for j = 1, #drnn_state_dec do
drnn_state_dec[j]:copy(dlst[j+1])
end
end
word_vec_layers[2].gradWeight[1]:zero()
-- backward prop encoder
local drnn_state_enc = reset_state(init_layer_enc_bwd, batch_l)
for t = source_l, 1, -1 do
drnn_state_enc[#drnn_state_enc]:add(context_grads[{{},t}])
local dlst = encoder_clones[t]:backward(encoder_inputs[t], drnn_state_enc)
for j = 1, #drnn_state_enc do
drnn_state_enc[j]:copy(dlst[j+1])
end
end
word_vec_layers[1].gradWeight[1]:zero()
local grad_norm = 0
for j = 1, #grad_params do
grad_norm = grad_norm + grad_params[j]:norm()^2
end
grad_norm = grad_norm^0.5
-- Shrink norm and update params
local param_norm = 0
local shrinkage = opt.max_grad_norm / grad_norm
for j = 1, #grad_params do
if shrinkage < 1 then
grad_params[j]:mul(shrinkage)
end
if opt.optim == 'adagrad' then
adagrad_step(params[j], grad_params[j], layer_etas[j], optStates[j])
elseif opt.optim == 'adadelta' then
adadelta_step(params[j], grad_params[j], layer_etas[j], optStates[j])
elseif opt.optim == 'adam' then
adam_step(params[j], grad_params[j], layer_etas[j], optStates[j])
else
params[j]:add(grad_params[j]:mul(-opt.learning_rate))
end
param_norm = param_norm + params[j]:norm()^2
end
param_norm = param_norm^0.5
-- Bookkeeping
num_words_target = num_words_target + batch_l*target_l
num_words_source = num_words_source + batch_l*source_l
train_nonzeros = train_nonzeros + nonzeros
train_loss = train_loss + loss*batch_l
local time_taken = timer:time().real - start_time
if i % opt.print_every == 0 then
local stats = string.format('Epoch: %d, Batch: %d/%d, Batch size: %d, LR: %.4f, ',
epoch, i, data:size(), batch_l, opt.learning_rate)
stats = stats .. string.format('PPL: %.2f, |Param|: %.2f, |GParam|: %.2f, ',
math.exp(train_loss/train_nonzeros), param_norm, grad_norm)
stats = stats .. string.format('Training: %d/%d/%d total/source/target tokens/sec',
(num_words_target+num_words_source) / time_taken,
num_words_source / time_taken,
num_words_target / time_taken)
print(stats)
end
if i % 200 == 0 then
collectgarbage()
end
end
return train_loss, train_nonzeros
end
local total_loss, total_nonzeros, batch_loss, batch_nonzeros
for epoch = 1, opt.epochs do
generator:training()
total_loss, total_nonzeros = train_batch(train_data, epoch)
local train_score = math.exp(total_loss/total_nonzeros)
print('Train', train_score)
opt.train_perf[#opt.train_perf + 1] = train_score
local score = eval(valid_data)
opt.val_perf[#opt.val_perf + 1] = score
if opt.optim == 'sgd' then --only decay with SGD
decay_lr(epoch)
end
end
-- save final model
local savefile = string.format('%s_final.t7', opt.savefile)
print('saving final model to ' .. savefile)
torch.save(savefile, {{encoder:double(), decoder:double(), generator:double()}, opt})
end
function eval(data)
generator:evaluate()
local nll = 0
local total = 0
for i = 1, data:size() do
local d = data[i]
local target, target_out, nonzeros, source = d[1], d[2], d[3], d[4]
local batch_l, target_l, source_l = d[5], d[6], d[7]
local context = context_proto[{{1, batch_l}, {1, source_l}}]
local rnn_state_enc = reset_state(init_layer_enc, batch_l, 0)
local encoder_inputs = {}
-- forward prop encoder
for t = 1, source_l do
encoder_clones[t]:evaluate()
encoder_inputs[t] = {source[t], table.unpack(rnn_state_enc[t-1])}
rnn_state_enc[t] = encoder_clones[t]:forward(encoder_inputs[t])
context[{{},t}]:copy(rnn_state_enc[t][#rnn_state_enc[t]])
end
local rnn_state_dec = reset_state(init_layer_dec, batch_l, 0)
local decoder_inputs = {}
-- forward prop decoder
for t = 1, target_l do
decoder_clones[t]:evaluate()
decoder_inputs[t] = {target[t], table.unpack(rnn_state_dec[t-1])}
rnn_state_dec[t] = decoder_clones[t]:forward(decoder_inputs[t])
local generator_input = {context, rnn_state_dec[t][#rnn_state_dec[t]]}
local pred = generator:forward(generator_input)
nll = nll + criterion:forward(pred, target_out[t])
end
total = total + nonzeros
end
local valid = math.exp(nll / total)
print("Valid", valid)
collectgarbage()
return valid
end
function get_layer(layer)
if layer.name ~= nil then
if layer.name == 'word_vecs_dec' then
table.insert(word_vec_layers, layer)
elseif layer.name == 'word_vecs_enc' then
table.insert(word_vec_layers, layer)
else
all_layers[layer.name] = layer
end
end
end
function main()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
if opt.gpuid >= 0 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpuid)
cutorch.manualSeed(opt.seed)
end
-- Create the data loader class.
print('loading data...')
train_data = data.new(opt, opt.data_file)
valid_data = data.new(opt, opt.val_data_file)
print('done!')
print(string.format('Source vocab size: %d, Target vocab size: %d',
valid_data.source_size, valid_data.target_size))
opt.max_sent_l_src = valid_data.source:size(2)
opt.max_sent_l_targ = valid_data.target:size(2)
opt.max_sent_l = math.max(opt.max_sent_l_src, opt.max_sent_l_targ)
if opt.max_batch_l == '' then
opt.max_batch_l = valid_data.batch_l:max()
end
print(string.format('Source max sent len: %d, Target max sent len: %d',
valid_data.source:size(2), valid_data.target:size(2)))
-- Enable memory preallocation - see memory.lua
preallocateMemory(opt.prealloc)
opt.context_size = opt.rnn_size
-- Build model
if opt.train_from:len() == 0 then
encoder = make_lstm(valid_data, opt, 'enc')
decoder = make_lstm(valid_data, opt, 'dec')
generator = make_generator(valid_data, opt)
else
assert(path.exists(opt.train_from), 'checkpoint path invalid')
print('loading ' .. opt.train_from .. '...')
local checkpoint = torch.load(opt.train_from)
local model, model_opt = checkpoint[1], checkpoint[2]
print(model_opt)
opt.val_perf = model_opt.val_perf
opt.train_perf = model_opt.train_perf
opt.num_layers = model_opt.num_layers
opt.rnn_size = model_opt.rnn_size
encoder = model[1]:double()
decoder = model[2]:double()
generator = model[3]:double()
end
local w = torch.ones(valid_data.target_size)
w[1] = 0
criterion = nn.ClassNLLCriterion(w)
criterion.sizeAverage = false
layers = {encoder, decoder, generator}
if opt.optim ~= 'sgd' then
layer_etas = {}
optStates = {}
for i = 1, #layers do
layer_etas[i] = opt.learning_rate -- can have layer-specific lr, if desired
optStates[i] = {}
end
end
if opt.gpuid >= 0 then
for i = 1, #layers do
layers[i]:cuda()
end
criterion:cuda()
end
-- these layers will be manipulated during training
word_vec_layers = {}
all_layers = {}
encoder:apply(get_layer)
decoder:apply(get_layer)
generator:apply(get_layer)
all_layers.attn_layer:apply(get_layer)
train(train_data, valid_data)
end
main()