Skip to content

Latest commit

 

History

History
136 lines (135 loc) · 4.44 KB

README.MD

File metadata and controls

136 lines (135 loc) · 4.44 KB

项目介绍

项目文件树

整个项目工程结构如下(Git默认设置不能跟踪空文件夹,需要手动创建)

SignLanguageRecognition
 ├── config
 │   ├── Net.cfg
 │   ├── SLR_dataset.cfg
 │   ├── SLR_server.cfg
 │   └── __init__.py
 ├── data
 │   └── SLR_dataset
 │       ├── dictionary.txt
 │       ├── processed/
 │       ├── txt2mat.m
 │       ├── xf500_body_depth_mat/
 │       ├── xf500_body_depth_mat.zip
 │       ├── xf500_body_depth_txt/
 │       ├── xf500_body_depth_txt.zip
 │       ├── xf500_color_video/
 │       └── xf500_depth_video/
 ├── data_preprocess.py
 ├── log
 │   ├── SLR_output.log
 │   └── SLR_server.log
 ├── model
 │   └── SLR
 │       └── blstm_output50_input36x24.pkl
 ├── nnet
 │   ├── AutoEncoder.py
 │   ├── blstm.py
 │   ├── lstm.py
 │   └── __init__.py
 ├── requirements.txt
 ├── SLR_flask_server.py
 ├── test.py
 ├── test_server.http
 ├── train.py
 └── utils
     ├── keyframes.py
     ├── logger.py
     ├── parse_config.py
     ├── plot_data.py
     ├── utils.py
     └── __init__.py

环境配置

  • Ubuntu 18.04 / Windows 10
  • VSCode + Python 3.7
  • PyTorch 1.2.0

操作流程

安装软件包

$ pip install -r requirements.txt

下载数据集

方式一:

方式二:

数据预处理

$ python data_preprocess.py

可以在源代码中修改参数,生成数据在data\SLR_dataset\processed

修改配置文件

网络配置

  • Net.cfg
[blstm]
# 定义输入特征数
INPUT_SIZE = 24
# 定义一个LSTM单元有多少个神经元
HIDDEN_SIZE = 1024
# 定义输出种类数
OUTPUT_SIZE = 50
# 批大小
BATCH_SIZE = 128
# 学习次数
EPOCH = 20
# 学习率
LEARNING_RATE = 0.001
# 时间步长
TIME_STEP = 36
# drop out 概率
DROP_RATE = 0.5
# 隐藏层数量
LAYERS = 2
# 随机种子
SEED = 0
# CPU线程数
CPU_NUMS = 32

数据文件配置

  • SLR_dataset.cfg
# 文件路径
dataset_dir = ./data/SLR_dataset/processed
# 数据文件名
data_file_name = SLR_S45_E95_K36_body_data.npy
# 标签文件名
label_file_name = SLR_S45_E95_K36_body_label.npy
# 训练集大小
train_data_size = 0.8
# 验证集大小
valid_data_size = 0.1
# 测试集大小
test_data_size = 0.1
# 模型保存文件夹
model_save_dir = ./model/SLR
# 日志保存文件
log_path = ./log/SLR_output.log

训练

$ python train.py

测试

$ python test.py

训练和测试结果记录在日志文件(log/)中,终端也会显示;模型文件保存在model/文件夹下

服务端运行

$ python SLR_flask_server.py

服务端接口设计较为简单,仅需要1个GET操作和1个POST操作即可,GET操作用来请求系统参数列表,POST用来连接手语词识别的方法,得到数据预测的识别结果。

接口名称 调用方法 请求参数 返回值说明
getSysParameter GET - success:表示操作是否成功;keyframes_num:关键帧数量;frame_len:帧长度;crop_size:图片裁剪大小;
predict POST keyframes_num:关键帧数量;frame_len:帧长度;skeleton_data:骨骼关节点位置数据,大小约束为keyframes_num×frame_len; success:表示操作是否成功;prediction:预测结果;