From d25165797bc6f39671be9e059b9c3b742a4e8837 Mon Sep 17 00:00:00 2001 From: solomon Date: Wed, 10 Jan 2024 11:30:08 -0800 Subject: [PATCH] Adds Bifunctor laws --- src/Test/QuickCheck/Classes.hs | 29 ++++++++++++++++++++++++++++- 1 file changed, 28 insertions(+), 1 deletion(-) diff --git a/src/Test/QuickCheck/Classes.hs b/src/Test/QuickCheck/Classes.hs index 2fad875..adc0b70 100644 --- a/src/Test/QuickCheck/Classes.hs +++ b/src/Test/QuickCheck/Classes.hs @@ -18,7 +18,7 @@ module Test.QuickCheck.Classes ( ordRel, ord, ordMorphism, semanticOrd , semigroup , monoid, monoidMorphism, semanticMonoid - , functor, functorMorphism, semanticFunctor, functorMonoid + , functor, bifunctor, functorMorphism, semanticFunctor, functorMonoid , apply, applyMorphism, semanticApply , applicative, applicativeMorphism, semanticApplicative , bind, bindMorphism, semanticBind, bindApply @@ -30,6 +30,7 @@ module Test.QuickCheck.Classes import Data.Bifoldable (Bifoldable (..)) import Data.Bifunctor hiding (first, second) +import qualified Data.Bifunctor as Bifunctor import Data.Foldable (Foldable(..)) import Data.Functor.Apply (Apply ((<.>))) import Data.Functor.Alt (Alt (())) @@ -233,6 +234,32 @@ functor = const ( "functor" identityP = fmap id =-= (id :: m a -> m a) composeP g f = fmap g . fmap f =-= (fmap (g.f) :: m a -> m c) +-- | Properties to check that the 'Bifunctor' @m@ satisfies the +-- functor laws. +bifunctor :: forall m a b c d. + ( Bifunctor m + , Arbitrary c, Arbitrary d + , CoArbitrary a, CoArbitrary b + , Show (m a b), Arbitrary (m a b), EqProp (m a b), EqProp (m c d)) => + m (a,b,c,d) (a,b,c,d) -> TestBatch +bifunctor = const ( "bifunctor" + , [ ("bimap id id ≡ id", property identityP) + , ("first id ≡ id", property identityFirstP) + , ("second id ≡ id", property identitySecondP) + , ("bimap f g ≡ first f . second g", property bimapFirstSecondP) + ] + ) + where + identityP :: Property + identityFirstP :: Property + identitySecondP :: Property + bimapFirstSecondP :: (b -> d) -> (a -> c) -> Property + + identityP = bimap id id =-= (id :: m a b -> m a b) + identityFirstP = Bifunctor.first id =-= (id :: m a b -> m a b) + identitySecondP = Bifunctor.second id =-= (id :: m a b -> m a b) + bimapFirstSecondP g f = bimap f g =-= (Bifunctor.first f . Bifunctor.second g :: m a b -> m c d) + -- Note the similarity between 'functor' and 'monoidMorphism'. The -- functor laws say that 'fmap' is a homomorphism w.r.t '(.)': --