forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
_396.java
86 lines (73 loc) · 2.39 KB
/
_396.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
package com.fishercoder.solutions;
/**
* 396. Rotate Function
*
* Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.*/
public class _396 {
public static class Solution1 {
/**
* F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
*/
public int maxRotateFunction(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int[] F = new int[A.length];
int[] B = A;
int max = Integer.MIN_VALUE;
for (int i = 0; i < A.length; i++) {
F[i] = compute(B);
max = Math.max(max, F[i]);
B = rotate(B);
}
return max;
}
private int compute(int[] b) {
int sum = 0;
for (int i = 0; i < b.length; i++) {
sum += i * b[i];
}
return sum;
}
private int[] rotate(int[] a) {
int first = a[0];
for (int i = 1; i < a.length; i++) {
a[i - 1] = a[i];
}
a[a.length - 1] = first;
return a;
}
}
public static class Solution2 {
/**
* Reference: https://discuss.leetcode.com/topic/58459/java-o-n-solution-with-explanation
*/
public int maxRotateFunction(int[] A) {
int allSum = 0;
int len = A.length;
int F = 0;
for (int i = 0; i < len; i++) {
F += i * A[i];
allSum += A[i];
}
int max = F;
for (int i = len - 1; i >= 1; i--) {
F = F + allSum - len * A[i];
max = Math.max(F, max);
}
return max;
}
}
}