forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
_662.java
109 lines (92 loc) · 2.92 KB
/
_662.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
package com.fishercoder.solutions;
import com.fishercoder.common.classes.TreeNode;
import java.util.AbstractMap;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
/**
* 662. Maximum Width of Binary Tree
*
* Given a binary tree, write a function to get the maximum width of the given tree.
* The width of a tree is the maximum width among all levels.
* The binary tree has the same structure as a full binary tree, but some nodes are null.
* The width of one level is defined as the length between the end-nodes
* (the leftmost and right most non-null nodes in the level,
* where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note: Answer will in the range of 32-bit signed integer.
*/
public class _662 {
/**
* Use a map to store the node to value map,
* we use root as index 1, then its left child is 2*i-1 and right child is 2*i
*/
public int widthOfBinaryTree(TreeNode root) {
if (root == null) {
return 0;
}
Queue<Map.Entry<TreeNode, Integer>> queue = new LinkedList<>();
queue.offer(new AbstractMap.SimpleEntry<>(root, 1));
int max = 1;
while (!queue.isEmpty()) {
int size = queue.size();
List<Map.Entry<TreeNode, Integer>> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
Map.Entry<TreeNode, Integer> curr = queue.poll();
if (curr.getKey().left != null) {
Map.Entry<TreeNode, Integer> newEntry = new AbstractMap.SimpleEntry<>(curr.getKey().left, curr.getValue() * 2 - 1);
queue.offer(newEntry);
list.add(newEntry);
}
if (curr.getKey().right != null) {
Map.Entry<TreeNode, Integer> newEntry = new AbstractMap.SimpleEntry<>(curr.getKey().right, curr.getValue() * 2);
queue.offer(newEntry);
list.add(newEntry);
}
}
if (list.size() > 1) {
max = Math.max(list.get(list.size() - 1).getValue() - list.get(0).getValue() + 1, max);
}
}
return max;
}
}