-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
53 lines (42 loc) · 1.63 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Usage: >> python search.py --index index.csv --query queries/sample_query.jpg --result-path
# or >> py search.py -i <your_index_filename> -q <your_query_image> -r your_datapath
# import the necessary packages
from module.colordescriptor import ColorDescriptor
from module.searcher import Searcher
import argparse
import cv2
import time
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--index", required = True,
help = "Path to where the computed index will be stored")
ap.add_argument("-q", "--query", required = True,
help = "Path to the query image")
ap.add_argument("-r", "--result-path", required = True,
help = "Path to the result path")
args = vars(ap.parse_args())
# Estimated timing
start_time = time.time()
# initialize the image descriptor
# using 8 Hue bins, 12 Saturation bins, and 3 Value bins
cd = ColorDescriptor((8, 12, 3))
# load the query image and describe it
query = cv2.imread(args["query"])
features = cd.describe(query)
# perform the search
searcher = Searcher(args["index"])
results = searcher.search(features)
# display the query
cv2.imshow("Query: %s"% (args["query"]), query)
# Result estimated time
print("\n--- Estimated time execution: %s seconds ---" % round(time.time() - start_time, 4))
# loop over the results
i = 0
print '\n 10 Best Matching Result for Query: ', args["query"], '\n'
for (score, resultID) in results:
# load the result image and display it
result = cv2.imread(args["result_path"] + "/" + resultID)
i = i + 1
cv2.imshow('Result #%s - %s'% (i, resultID), result)
print i,'.\t Score: ', score, '\t\t | image: ', resultID
cv2.waitKey(0)