This repository has been archived by the owner on Jan 19, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathIOwriteprototxt.py
801 lines (683 loc) · 23.5 KB
/
IOwriteprototxt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
# TODO: Add properties to solver
# TODO: snapshot_format not available in this version. update later.
__author__ = 'hugh'
bl_info = {
"name": "Create Caffe solution",
"category": "Object",
}
import os
import bpy
import string
tab = ' '
tab2 = tab + tab
tab3 = tab2 + tab
def getFillerString(filler, name):
fillerString = tab3 + 'type: "%s"\n' % filler.type
if filler.type == 'constant':
fillerString += tab3 + 'value: %f\n' % (filler.value)
elif filler.type == 'xavier' or filler.type == 'msra':
fillerString += tab3 + 'variance_norm: %s\n' % (filler.variance_norm)
elif filler.type == 'gaussian':
fillerString += tab3 + 'mean: %f\n' % filler.mean
fillerString += tab3 + 'std: %f\n' % filler.std
if filler.is_sparse:
fillerString += tab3 + 'sparse: %i\n' % (filler.sparse)
elif filler.type == 'uniform':
fillerString += tab3 + 'min: %f\n' % filler.min
fillerString += tab3 + 'max: %f\n' % filler.max
string = '''\
%s {
%s
}
''' % (name, fillerString)
return string
def conv_template(node):
if node.square_padding:
padding_string = tab2 + 'pad: %i\n' % node.pad
else:
padding_string = tab2 + 'pad_h: %i\n' % node.pad_h
padding_string += tab2 + 'pad_w: %i\n' % node.pad_w
if node.square_kernel:
kernel_string = tab2 + 'kernel_size: %i\n' % node.kernel_size
else:
kernel_string = tab2 + 'kernel_h: %i\n' % node.kernel_h
kernel_string += tab2 + 'kernel_w: %i\n' % node.kernel_w
if node.square_stride:
stride_string = tab2 + 'stride: %i\n' % node.stride
else:
stride_string = tab2 + 'stride_h: %i\n' % node.stride_h
stride_string += tab2 + 'stride_w: %i\n' % node.stride_w
weight_filler_string = getFillerString(node.weight_filler, 'weight_filler')
bias_filler_string = getFillerString(node.bias_filler, 'bias_filler')
string = '''\
convolution_param {
num_output: %i
%s
%s
%s
%s
%s
}
''' % (node.num_output, padding_string, kernel_string, stride_string, weight_filler_string,
bias_filler_string)
# loadable
return string
def data_param_template(node, source, batch_size):
string = '''\
data_param {
source: "%s"
backend: %s
batch_size: %i
rand_skip: %i
}
''' % (source, node.db_type, batch_size, node.rand_skip)
return string
def image_data_param_template(node, source, batch_size):
string = '''\
image_data_param {
source: "%s"
batch_size: %i
rand_skip: %i
shuffle: %i
new_height: %i
new_width: %i
is_color: %i
}
''' % (source, batch_size, node.rand_skip, node.shuffle, node.new_height, node.new_width, node.is_color)
return string
# TODO: Finish mean_value and random crop
def transform_param_template(node):
mean_file_string = ''
if node.use_mean_file:
mean_file_string = tab2 + 'mean_file: "%s"\n' % node.mean_file
string = '''\
transform_param {
scale: %f
mirror: %i
%s
}
''' % (node.scale, node.mirror, mean_file_string)
return string
def hdf5_data_template(node, source, batch_size):
string = '''\
hdf5_data_param {
source: "%s"
batch_size: %i
shuffle: %i
}
''' % (source, batch_size, node.shuffle)
return string
def pool_template(node):
string = '''\
pooling_param {
pool: %s
kernel_size: %i
stride: %i
}
''' % (node.mode, node.kernel_size, node.stride)
# Loadable
return string
def mvntemplate(node):
string = '''\
mvn_param {
normalize_variance: %s
across_channels: %s
eps: %f
}
''' % (node.normalize_variance, node.across_channels, node.eps)
# Loadable
return string
def eltwisetemplate(node):
if node.operation == 'PROD':
coeffstring = 'coeff: %f' % node.coeff
elif node.operation == 'SUM':
coeffstring = 'stable_prod_grad: %i' % node.stable_prod_grad
else:
coeffstring = ''
string = '''\
eltwise_param {
operation: %s
%s
}
''' % (node.operation, coeffstring)
return string
def FC_template(node):
weight_filler_string = getFillerString(node.weight_filler, 'weight_filler')
bias_filler_string = getFillerString(node.bias_filler, 'bias_filler')
if node.specax:
axstring = 'axis: %i' % node.axis
else:
axstring = ''
string = '''\
inner_product_param {
num_output: %i
%s
%s
%s
}
''' % (node.num_output, weight_filler_string, bias_filler_string, axstring)
return string
def PReLU_template(node):
filler_string = getFillerString(node.filler, 'filler')
string = '''\
prelu_param {
channel_shared: %i
%s
}
''' % (node.channel_shared, filler_string)
return string
def Concattemplate(node):
string = '''\
concat_param {
axis: %i
}
''' % (node.axis)
return string
def pythonLosstemplate(node):
string = '''\
python_param {
module:"%s"
layer:"%s"
}
''' % (node.module,node.layer)
return string
def argmaxtemplate(node):
string = '''\
argmax_param {
out_max_val: %i
top_k: %i
}
''' % (node.OutMaxVal, node.TopK)
return string
def hdf5outputtemplate(node):
string = '''\
hdf5_output_param {
file_name: "%s"
}
}
''' % (node.filename)
return string
def logtemplate(node):
string = '''\
log_param {
scale: %f
shift: %f
base: %f
}
''' % (node.scale, node.shift, node.base)
return string
def powertemplate(node):
string = '''\
power_param {
power: %f
scale: %f
shift: %f
}
''' % (node.power, node.scale, node.shift)
return string
def exptemplate(node):
string = '''\
exp_param {
base: %f
scale: %f
shift: %f
}
''' % (node.base, node.scale, node.shift)
return string
def reductiontemplate(node):
string = '''\
reduction_param {
operation: %s
axis: %i
coeff: %f
}
''' % (node.operation, node.axis, node.coeff)
return string
def slicetemplate(node):
slice_points_string = '\n'.join(map(lambda x: tab2 + 'slice_point: %i' % x.slice_point, node.slice_points))
string = '''\
slice_param {
axis: %i
%s
}
''' % (node.axis, slice_points_string)
return string
def solver_template(node):
net_path = node.config_path + '%s_train_test.prototxt' % node.solvername
lr_string = ''
if node.lr_policy == 'step':
lr_string += 'gamma: %i\n' % node.gamma
lr_string += 'stepsize: %i\n' % node.stepsize
elif node.lr_policy == 'exp':
lr_string += 'gamma: %i\n' % node.gamma
elif node.lr_policy == 'inv':
lr_string += 'gamma: %i\n' % node.gamma
lr_string += 'power: %i\n' % node.power
elif node.lr_policy == 'multistep':
pass
elif node.lr_policy == 'poly':
lr_string += 'power: %i\n' % node.power
elif node.lr_policy == 'sigmoid':
lr_string += 'gamma: %i\n' % node.gamma
lr_string += 'stepsize: %i\n' % node.stepsize
random_seed_string = ''
if node.use_random_seed:
random_seed_string = 'random_seed: %i' % node.random_seed
momentumstring = ''
delta_string = ''
if node.solver_type not in ['AdaGrad','RMSProp']:
momentumstring = 'momentum: %f'%node.momentum
if node.solver_type == 'AdaDelta':
delta_string = 'delta: %f' % node.delta
if node.solver_type == 'RMSProp':
delta_string = 'rms_decay: %f' % node.RMSdecay
if node.solver_type == 'Adam':
delta_string = 'momentum2: %f'%node.momentum2
if node.regularization_type != 'NONE':
string = ''' \
regularization_type: "%s"
''' % node.regularization_type
else:
string = ''
string += ''' \
net: "%s"
test_iter: %i
test_interval: %i
test_compute_loss: %i
test_initialization: %i
base_lr: %f
display: %i
average_loss: %i
max_iter: %i
iter_size: %i
lr_policy: "%s"
%s
%s
weight_decay: %f
snapshot: %i
snapshot_prefix: "%s"
snapshot_diff: %i
solver_mode: %s
%s
type: "%s"
%s
debug_info: %i
snapshot_after_train: %i
''' % (net_path, node.test_iter, node.test_interval, node.test_compute_loss, node.test_initialization, node.base_lr,
node.display, node.average_loss, node.max_iter,
node.iter_size, node.lr_policy, lr_string, momentumstring, node.weight_decay,
node.snapshot, node.snapshot_prefix + node.solvername, node.snapshot_diff,
node.solver_mode, random_seed_string, node.solver_type, delta_string, node.debug_info, node.snapshot_after_train)
return "\n".join(filter(lambda x: x.strip(), string.splitlines())) + "\n"
def deploytemplate(batch, channels, xsize, ysize, datain):
deploystring = '''\
name: 'Autogen'
input: "%s"
input_shape {
dim: %i
dim: %i
dim: %i
dim: %i
}
''' % (datain, batch, channels, xsize, ysize)
return deploystring
class script(object):
def __init__(self,caffepath, configpath, solvername, gpus, solver):
self.caffepath = caffepath
self.configpath = configpath
self.solvername = solvername
self.gpus = gpus
self.solver = solver
def make(self):
if hasattr(self,'extra_paths'):
pathadd = 'PYTHONPATH=$PYTHONPATH:'+':'.join(self.extra_paths)
else:
pathadd = ''
gpustring = ''
usedcount = 0
extrastring = ''
if self.solver == 'GPU' and self.gpus:
extrastring = '--gpu=%s' % self.gpus[-1]
solverstring = self.configpath + '%s_solver.prototxt' % self.solvername
caffestring = self.caffepath + 'caffe'
string = "#!/usr/bin/env sh \n%s '%s' train --solver='%s' %s" % (pathadd,caffestring, solverstring, extrastring)
return string
def loss_weight_template(loss_weight):
return tab + 'loss_weight: %f' % loss_weight
def param_template(param):
string = tab + 'param {\n'
if param.name.strip():
string += tab2 + 'name: "%s"\n' % param.name
string += tab2 + 'lr_mult: %f\n' % param.lr_mult
string += tab2 + 'decay_mult: %f\n' % param.decay_mult
# string += tab2 + 'share_mode: %s\n' % param.share_mode
string += tab + '}'
return string
def get_params(node):
params = []
if node.extra_params:
params.append(param_template(node.weight_params))
params.append(param_template(node.bias_params))
return params
def get_include_in(node):
if node.include_in == "BOTH":
return ''
string = '''\
include {
phase: %s
}
''' % node.include_in
return string
def layer_template(node, tops, bottoms, special_params):
tops_string = '\n'.join(map(lambda x: tab + 'top: "%s"' % x, tops))
bottoms_string = '\n'.join(map(lambda x: tab + 'bottom: "%s"' % x, bottoms))
params_string = '\n'.join(get_params(node))
special_params_string = '\n'.join(special_params)
include_in_string = get_include_in(node)
string = '''\
layer {
name: "%s"
type: "%s"
%s
%s
%s
%s
%s
}
''' % (node.name, node.n_type, tops_string, bottoms_string, params_string, special_params_string, include_in_string)
return "\n".join(filter(lambda x: x.strip(), string.splitlines())) + "\n"
def LRNtemplate(node):
string = '''\
lrn_param {
local_size: %i
alpha: %f
beta: %f
norm_region: %s
}
''' % (node.size, node.alpha, node.beta, node.mode)
return string
def Relutemplate(node):
if node.negslope:
string = '''\
relu_param {
negative_slope: %f
}
''' % (node.negative_slope)
else:
string = ''
return string
def dropouttemplate(node):
string = '''\
dropout_param {
dropout_ratio: %f
}
''' % (node.dropout_ratio)
return string
def batchnormtemplate(node):
string = '''\
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
'''
return string
class Vertex():
pass
def multiplemin(iterable, key):
toreturn = []
firstmin = min(iterable, key=key)
toreturn.append(firstmin)
smalleriterable = [i for i in iterable if i not in toreturn]
if smalleriterable:
nextmin = min(smalleriterable, key=key)
while key(nextmin) == key(firstmin):
#print (nextmin.string)
toreturn.append(nextmin)
smalleriterable = [i for i in iterable if i not in toreturn]
if smalleriterable:
nextmin = min(smalleriterable, key=key)
else:
return toreturn
return toreturn
def reorder(graph):
res_string = []
res_dstring = []
while len(graph) > 0:
earlynodes = multiplemin(graph, lambda x: len(x.bottoms))
for curr in earlynodes:
if len(curr.bottoms) != 0:
print('Cycle in graph?!')
res_string.append(curr.string)
res_dstring.append(curr.dstring)
for item in graph:
for top in curr.tops:
try:
item.bottoms.remove(top)
except:
pass
graph.remove(curr)
return res_string, res_dstring
def nodebefore(innode, socket=0):
return innode.inputs[socket].links[0].from_socket.node
def isinplace(node):
if node.bl_idname == 'ReluNodeType': # or node.bl_idname == 'DropoutNodeType':
return 1
else:
return 0
def findsocket(socketname, node): # Given a node, find the position of a certain output socket
for number, socket in enumerate(node.outputs):
if socket.name == socketname:
return number
raise TypeError
def autotop(node, socket, orderpass=0): # Assigns an arbitrary top name to a node
if isinplace(node) and not orderpass:
top = autobottom(node, 0, orderpass=0)
else:
top = node.name + str(socket)
return top
def autobottom(node, socketnum, orderpass=0): # Finds the bottom of a node socket
if isinplace(nodebefore(node, socketnum)) and not orderpass:
socketbelow = nodebefore(node, socketnum).inputs[0].links[0].from_socket.name
socketbelowposition = findsocket(socketbelow, nodebefore(nodebefore(node, socketnum)))
bottom = nodebefore(nodebefore(node, socketnum), 0).name + str(socketbelowposition)
else:
socketbelow = node.inputs[socketnum].links[0].from_socket.name
socketbelowposition = findsocket(socketbelow, nodebefore(node, socketnum))
bottom = nodebefore(node, socketnum).name + str(socketbelowposition)
return bottom
def getbottomsandtops(node, orderpass=0):
bottoms = []
for socknum, input in enumerate(node.inputs):
if input.is_linked:
bottom = input.links[0].from_socket.output_name
if bottom != '':
bottoms.extend([bottom])
else:
bottoms.extend([autobottom(node, socknum, orderpass)])
tops = [x.output_name if x.output_name != '' else autotop(node, socket, orderpass) for socket, x in
enumerate(node.outputs)]
return bottoms, tops
def SolveFunction(context, operatorself=None):
graph = []
extra_paths = []
DataNode = False
for space in bpy.context.area.spaces:
if space.type == 'NODE_EDITOR':
tree = space.edit_tree
bpy.ops.node.select_all()
if len(context.selected_nodes) == 0:
bpy.ops.node.select_all()
########################################### Main loop
for node in context.selected_nodes:
nname = node.name
string = ''
bottoms, tops = getbottomsandtops(node)
special_params = []
deploy = True
###########################
if node.bl_idname == 'DataNodeType':
DataNode = True
transform_param = transform_param_template(node)
node.n_type = node.db_type
Isize = [node.new_height, node.new_width, node.height, node.width]
if node.db_type in ('LMDB', 'LEVELDB'):
train_params = [data_param_template(node, node.train_path, node.train_batch_size)]
test_params = [data_param_template(node, node.test_path, node.test_batch_size)]
node.n_type = 'Data'
train_params.append(transform_param)
test_params.append(transform_param)
y = node.height
x = node.width
elif node.db_type == 'ImageData':
train_params = [image_data_param_template(node, node.train_data, node.train_batch_size)]
test_params = [image_data_param_template(node, node.test_data, node.test_batch_size)]
train_params.append(transform_param)
test_params.append(transform_param)
y = node.new_height
x = node.new_width
elif node.db_type == 'HDF5Data':
train_params = [hdf5_data_template(node, node.train_data, node.train_batch_size)]
test_params = [hdf5_data_template(node, node.test_data, node.test_batch_size)]
y = node.height
x = node.width
else:
y = node.height
x = node.width
origin = node.include_in
node.include_in = "TRAIN"
train_string = layer_template(node, tops, bottoms, train_params)
node.include_in = "TEST"
test_string = layer_template(node, tops, bottoms, test_params)
node.include_in = origin
if node.include_in == 'TRAIN':
string = train_string
elif node.include_in == 'TEST':
string = test_string
else:
string = train_string + test_string
if node.include_in != "TEST":
dstring = deploytemplate(1,node.channels,y,x,tops[0])
elif node.bl_idname == 'PoolNodeType':
special_params.append(pool_template(node))
elif node.bl_idname == 'EltwiseNodeType':
special_params.append(eltwisetemplate(node))
elif node.bl_idname == 'ExpNodeType':
special_params.append(exptemplate(node))
elif node.bl_idname == 'ConvNodeType':
special_params.append(conv_template(node))
elif node.bl_idname == 'DeConvNodeType':
special_params.append(conv_template(node))
elif node.bl_idname == 'FCNodeType':
special_params.append(FC_template(node))
elif node.bl_idname == 'LRNNodeType':
special_params.append(LRNtemplate(node))
# elif node.bl_idname == 'AcNodeType':
# node.type = node.mode
elif node.bl_idname == 'ReluNodeType':
special_params.append(Relutemplate(node))
elif node.bl_idname == 'PReluNodeType':
special_params.append(PReLU_template(node))
elif node.bl_idname == 'DropoutNodeType':
special_params.append(dropouttemplate(node))
elif node.bl_idname == 'BatchNormNodeType':
special_params.append(batchnormtemplate(node))
elif node.bl_idname == 'SMLossNodeType':
special_params.append(loss_weight_template(node.w))
deploy = False
elif node.bl_idname == 'SCELossNodeType':
special_params.append(loss_weight_template(node.w))
deploy = False
elif node.bl_idname == 'EULossNodeType':
special_params.append(loss_weight_template(node.w))
deploy = False
elif node.bl_idname == 'PythonLossNodeType':
special_params.append(pythonLosstemplate(node))
special_params.append(loss_weight_template(node.w))
extra_paths.append(node.modulepath)
elif node.bl_idname == 'AccuracyNodeType':
deploy = False
elif node.bl_idname == 'ConcatNodeType':
special_params.append(Concattemplate(node))
elif node.bl_idname == 'ArgMaxNodeType':
special_params.append(argmaxtemplate(node))
elif node.bl_idname == 'HDF5OutputNodeType':
special_params.append(hdf5outputtemplate(node))
elif node.bl_idname == 'LogNodeType':
special_params.append(logtemplate(node))
elif node.bl_idname == 'PowerNodeType':
special_params.append(powertemplate(node))
elif node.bl_idname == 'ReductionNodeType':
special_params.append(reductiontemplate(node))
elif node.bl_idname == 'SliceNodeType':
special_params.append(slicetemplate(node))
elif node.bl_idname == 'SolverNodeType':
solverstring = solver_template(node)
scriptmaker = script(node.caffe_exec, node.config_path, node.solvername, node.gpus,node.solver_mode)
if not node.config_path and operatorself:
operatorself.report({'ERROR'}, "Solver node config path not set")
return {'FINISHED'}
configpath = node.config_path
solvername = node.solvername
elif node.bl_idname == 'MVNNodeType':
special_params.append(mvntemplate(node))
elif string == 0:
raise OSError
pass
if node.bl_idname != 'SolverNodeType':
if node.bl_idname != 'DataNodeType':
string = layer_template(node, tops, bottoms, special_params)
if deploy:
dstring = string
else:
dstring = ''
################################# Recalculate bottoms and tops for ordering
bottoms, tops = getbottomsandtops(node, orderpass=1) # when orderpass = 1, we ignore ReLu nodes
#####################################
v = Vertex()
v.string = string
v.dstring = dstring
v.bottoms = bottoms
v.tops = tops
graph.append(v)
if not DataNode:
operatorself.report({'ERROR'}, "No Data Node in output. Output will be deploy only")
Isize = [0,0,0,0]
scriptmaker.extra_paths = extra_paths
scriptstring = scriptmaker.make()
strings, dstrings = reorder(graph)
solution = ''.join(strings)
dsolution = ''.join(dstrings)
os.chdir(configpath)
ttfile = open('%s_train_test.prototxt' % solvername, mode='w')
ttfile.write(solution)
ttfile.close()
depfile = open('%s_deploy.prototxt' % solvername, mode='w')
depfile.write(dsolution)
depfile.close()
solvefile = open('%s_solver.prototxt' % solvername, mode='w')
solvefile.write(solverstring)
solvefile.close()
scriptfile = open('train_%s.sh' % solvername, mode='w')
scriptfile.write(scriptstring)
scriptfile.close()
os.system("chmod 775 %s" % os.path.join(configpath,'train_%s.sh' % solvername))
print ('Finished solving tree')
protoandsolver = (solution + '\nlayer {\n' + 'type: "Solver"\n' + solverstring + '\n}\n').split('\n')
return [[i + '\n' for i in protoandsolver], Isize], os.path.join(configpath,'train_%s.sh' % solvername)
class Solve(bpy.types.Operator):
"""Generate Caffe solver""" # blender will use this as a tooltip for menu items and buttons.
bl_idname = "nodes.make_solver" # unique identifier for buttons and menu items to reference.
bl_label = "Create Protoxt Only" # display name in the interface.
bl_options = {'REGISTER'} # enable undo for the operator.
def execute(self, context): # execute() is called by blender when running the operator.
SolveFunction(context, operatorself=self)
return {'FINISHED'} # this lets blender know the operator finished successfully.
def register():
bpy.utils.register_class(Solve)
def unregister():
bpy.utils.unregister_class(Solve)