-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclassifier_utils.py
776 lines (627 loc) · 27 KB
/
classifier_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
# coding=utf-8
import os
import csv
import random
import collections
import tensorflow_hub as hub
import tensorflow.compat.v1 as tf
from tensorflow.contrib import tpu as contrib_tpu
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import metrics as contrib_metrics
from classifier_multi_label_denses import modeling
from classifier_multi_label_denses import optimization
from classifier_multi_label_denses import tokenization
from classifier_multi_label_denses.hyperparameters import Hyperparamters as hp
from classifier_multi_label_denses.utils import load_csv
def label2id(label):
return hp.dict_label2id[str(label)]
def id2label(index):
return hp.dict_id2label[str(index)]
def read_csv(input_file):
"""Reads a tab separated value file."""
df = load_csv(input_file,header=0).fillna('|')
jobcontent = df['content'].tolist()
jlabel = df.loc[:,hp.label_vocabulary].values
lines = [[jlabel[i],jobcontent[i]] for i in range(len(jlabel)) if type(jobcontent[i])==str]
random.shuffle(lines)
print('Read csv finished!(1)')
return lines
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class PaddingInputExample(object):
"""Fake example so the num input examples is a multiple of the batch size.
When running eval/predict on the TPU, we need to pad the number of examples
to be a multiple of the batch size, because the TPU requires a fixed batch
size. The alternative is to drop the last batch, which is bad because it means
the entire output data won't be generated.
We use this class instead of `None` because treating `None` as padding
battches could cause silent errors.
"""
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
guid=None,
example_id=None,
is_real_example=True):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.example_id = example_id
self.guid = guid
self.is_real_example = is_real_example
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def __init__(self, use_spm, do_lower_case):
super(DataProcessor, self).__init__()
self.use_spm = use_spm
self.do_lower_case = do_lower_case
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
@classmethod
def _read_csv(cls,input_file):
"""Reads a tab separated value file."""
df = load_csv(input_file,header=0).fillna('|')
jobcontent = df['content'].tolist()
jlabel = df.loc[:,hp.label_vocabulary].values
lines = [[jlabel[i],jobcontent[i]] for i in range(len(jlabel)) if type(jobcontent[i])==str]
random.shuffle(lines)
print('Read csv finished!(1)')
print('Head data:',lines[0:5])
print('Length of data:',len(lines))
return lines
class ClassifyProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def __init__(self):
self.labels = set()
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_csv(os.path.join(data_dir, hp.train_data)), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, hp.test_data)), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, hp.test_data)), "test")
def get_labels(self):
"""See base class."""
return list(hp.dict_id2label.keys())
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = tokenization.convert_to_unicode(line[1])
label = tokenization.convert_to_unicode(line[0])
#self.labels.add(label)
# by chenming
for l in label:
self.labels.add(l)
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer, task_name):
"""Converts a single `InputExample` into a single `InputFeatures`."""
# by chenming
task_name = "sts-b"
if isinstance(example, PaddingInputExample):
return InputFeatures(
input_ids=[0] * max_seq_length,
input_mask=[0] * max_seq_length,
segment_ids=[0] * max_seq_length,
label_id=0,#??
is_real_example=False)
if task_name != "sts-b":
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in ALBERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if task_name != "sts-b":
label_id = label_map[example.label]
else:
label_id = example.label
# if ex_index < 5:
# tf.logging.info("*** Example ***")
# tf.logging.info("guid: %s" % (example.guid))
# tf.logging.info("tokens: %s" % " ".join(
# [tokenization.printable_text(x) for x in tokens]))
# tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
# tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file, task_name):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer, task_name)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_float_feature([feature.label_id])\
if task_name == "sts-b" else create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder, task_name, use_tpu, bsz,
multiple=1):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
labeltype = tf.float32 if task_name == "sts-b" else tf.int64
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length * multiple], tf.int64),
"label_ids": tf.FixedLenFeature([], labeltype),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
if use_tpu:
batch_size = params["batch_size"]
else:
batch_size = bsz
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
contrib_data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _create_model_from_hub(hub_module, is_training, input_ids, input_mask,
segment_ids):
"""Creates an ALBERT model from TF-Hub."""
tags = set()
if is_training:
tags.add("train")
albert_module = hub.Module(hub_module, tags=tags, trainable=True)
albert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
albert_outputs = albert_module(
inputs=albert_inputs,
signature="tokens",
as_dict=True)
output_layer = albert_outputs["pooled_output"]
return output_layer
def _create_model_from_scratch(albert_config, is_training, input_ids,
input_mask, segment_ids, use_one_hot_embeddings):
"""Creates an ALBERT model from scratch (as opposed to hub)."""
model = modeling.AlbertModel(
config=albert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
output_layer = model.get_pooled_output()
return output_layer
def create_model(albert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings, task_name,
hub_module):
"""Creates a classification model."""
if hub_module:
tf.logging.info("creating model from hub_module: %s", hub_module)
output_layer = _create_model_from_hub(hub_module, is_training, input_ids,
input_mask, segment_ids)
else:
tf.logging.info("creating model from albert_config")
output_layer = _create_model_from_scratch(albert_config, is_training,
input_ids, input_mask,
segment_ids,
use_one_hot_embeddings)
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if task_name != "sts-b":
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
else:
probabilities = logits
logits = tf.squeeze(logits, [-1])
predictions = logits
per_example_loss = tf.square(logits - labels)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, probabilities, logits, predictions)
def model_fn_builder(albert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings, task_name, hub_module=None,
optimizer="adamw"):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, probabilities, logits, predictions) = \
create_model(albert_config, is_training, input_ids, input_mask,
segment_ids, label_ids, num_labels,
use_one_hot_embeddings, task_name, hub_module)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps,
use_tpu, optimizer)
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
if task_name not in ["sts-b", "cola"]:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions,
weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
elif task_name == "sts-b":
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Pearson correlations for STS-B."""
# Display labels and predictions
concat1 = contrib_metrics.streaming_concat(logits)
concat2 = contrib_metrics.streaming_concat(label_ids)
# Compute Pearson correlation
pearson = contrib_metrics.streaming_pearson_correlation(
logits, label_ids, weights=is_real_example)
# Compute MSE
# mse = tf.metrics.mean(per_example_loss)
mse = tf.metrics.mean_squared_error(
label_ids, logits, weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss,
weights=is_real_example)
return {"pred": concat1, "label_ids": concat2, "pearson": pearson,
"MSE": mse, "eval_loss": loss,}
elif task_name == "cola":
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Matthew's correlations for STS-B."""
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
# https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
tp, tp_op = tf.metrics.true_positives(
predictions, label_ids, weights=is_real_example)
tn, tn_op = tf.metrics.true_negatives(
predictions, label_ids, weights=is_real_example)
fp, fp_op = tf.metrics.false_positives(
predictions, label_ids, weights=is_real_example)
fn, fn_op = tf.metrics.false_negatives(
predictions, label_ids, weights=is_real_example)
# Compute Matthew's correlation
mcc = tf.div_no_nan(
tp * tn - fp * fn,
tf.pow((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn), 0.5))
# Compute accuracy
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions,
weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss,
weights=is_real_example)
return {"matthew_corr": (mcc, tf.group(tp_op, tn_op, fp_op, fn_op)),
"eval_accuracy": accuracy, "eval_loss": loss,}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
predictions={
"probabilities": probabilities,
"predictions": predictions
},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn
# This function is not used by this file but is still used by the Colab and
# people who depend on it.
def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer, task_name):
"""Convert a set of `InputExample`s to a list of `InputFeatures`."""
features = []
#print('1'*20)
print('Length of examples:',len(examples))
for (ex_index, example) in enumerate(examples):
#print('2'*20)
#print('ex_index:',ex_index)
if ex_index % 10000 == 0:
#print('3'*20)
#tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
print("Writing example %d of %d" % (ex_index, len(examples)))
#print('4'*20)
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer, task_name)
features.append(feature)
return features
# Load parameters
max_seq_length = hp.sequence_length
do_lower_case = hp.do_lower_case
vocab_file = hp.vocab_file
tokenizer = tokenization.FullTokenizer.from_scratch(vocab_file=vocab_file,
do_lower_case=do_lower_case,
spm_model_file=None)
processor = ClassifyProcessor()
label_list = processor.get_labels()
data_dir = hp.data_dir
def get_features():
# Load train data
train_examples = processor.get_train_examples(data_dir)
# Get onehot feature
features = convert_examples_to_features( train_examples, label_list, max_seq_length, tokenizer,task_name='classify')
input_ids = [f.input_ids for f in features]
input_masks = [f.input_mask for f in features]
segment_ids = [f.segment_ids for f in features]
label_ids = [f.label_id for f in features]
print('Get features finished!')
return input_ids,input_masks,segment_ids,label_ids
def get_features_test():
# Load test data
train_examples = processor.get_test_examples(data_dir)
# Get onehot feature
features = convert_examples_to_features( train_examples, label_list, max_seq_length, tokenizer,task_name='classify_test')
input_ids = [f.input_ids for f in features]
input_masks = [f.input_mask for f in features]
segment_ids = [f.segment_ids for f in features]
label_ids = [f.label_id for f in features]
print('Get features(test) finished!')
return input_ids,input_masks,segment_ids,label_ids
def create_example(line,set_type):
"""Creates examples for the training and dev sets."""
guid = "%s-%s" % (set_type, 1)
text_a = tokenization.convert_to_unicode(line[1])
label = tokenization.convert_to_unicode(line[0])
example = InputExample(guid=guid, text_a=text_a, text_b=None, label=label)
return example
def get_feature_test(sentence):
example = create_example(['0',sentence],'test')
feature = convert_single_example(0, example, label_list,max_seq_length, tokenizer,task_name='classify')
return feature.input_ids,feature.input_mask,feature.segment_ids,feature.label_id
if __name__ == '__main__':
#print(features)
### 获取参数:test
sentence = '天天向上'
feature = get_feature_test(sentence)