Skip to content

Commit

Permalink
remove magrittr dependency
Browse files Browse the repository at this point in the history
  • Loading branch information
helske committed Oct 16, 2023
1 parent 3c55c2c commit 97b489e
Show file tree
Hide file tree
Showing 20 changed files with 172 additions and 185 deletions.
3 changes: 1 addition & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ Description: Efficient methods for Bayesian inference of state space models
models and discretised diffusion models are supported.
See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.
License: GPL (>= 2)
Depends: R (>= 3.5.0)
Depends: R (>= 4.1.0)
Suggests:
covr,
ggplot2 (>= 2.0.0),
Expand All @@ -37,7 +37,6 @@ Suggests:
sitmo,
testthat
Imports:
magrittr,
bayesplot,
checkmate,
coda (>= 0.18-1),
Expand Down
1 change: 0 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,6 @@ importFrom(dplyr,as_tibble)
importFrom(dplyr,group_by)
importFrom(dplyr,summarise)
importFrom(dplyr,ungroup)
importFrom(magrittr,"%>%")
importFrom(posterior,as_draws)
importFrom(posterior,as_draws_df)
importFrom(posterior,default_convergence_measures)
Expand Down
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ bssm 2.0.2 (Release date: 2023-09-04)
* Added a default plot method for the `run_mcmc` output.
* Fixed the aliases of the main help page to accomodate changes in roxygen2.
* Removed explicit C++ version requirement as required by new CRAN policies.
* Removed `magrittr` dependency and switched to native pipe, leading to
requirement for R 4.1.0+.

bssm 2.0.1 (Release date: 2022-05-02)
==============
Expand Down
5 changes: 2 additions & 3 deletions R/fitted.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
#'
#' @export
#' @importFrom stats fitted
#' @importFrom magrittr %>%
#' @importFrom dplyr group_by ungroup summarise as_tibble
#' @importFrom diagis weighted_quantile weighted_var weighted_mean weighted_se
#' @name fitted.mcmc_output
Expand Down Expand Up @@ -110,13 +109,13 @@ fitted.mcmc_output <- function(object, model,
Variable = variables,
Time = rep(time(model$y), each = nrow(pred)))

d %>% dplyr::group_by(.data$Variable, .data$Time) %>%
d |> dplyr::group_by(.data$Variable, .data$Time) |>
dplyr::summarise(
Mean = weighted_mean(.data$value, w),
SD = sqrt(weighted_var(.data$value, w)),
dplyr::as_tibble(as.list(weighted_quantile(.data$value, w,
probs = probs))),
"SE(Mean)" = as.numeric(sqrt(asymptotic_var(.data$value, w)))) %>%
"SE(Mean)" = as.numeric(sqrt(asymptotic_var(.data$value, w)))) |>
dplyr::ungroup()
}

4 changes: 2 additions & 2 deletions R/models.R
Original file line number Diff line number Diff line change
Expand Up @@ -898,8 +898,8 @@ bsm_lg <- function(y, sd_y, sd_level, sd_slope, sd_seasonal,
#'
#' # Traceplot using as.data.frame method for MCMC output
#' library("dplyr")
#' as.data.frame(mcmc_out) %>%
#' filter(variable == "sd_level") %>%
#' as.data.frame(mcmc_out) |>
#' filter(variable == "sd_level") |>
#' ggplot(aes(y = value, x = iter)) + geom_line()
#'
#' }
Expand Down
24 changes: 12 additions & 12 deletions R/post_correction.R
Original file line number Diff line number Diff line change
Expand Up @@ -210,34 +210,34 @@ suggest_N <- function(model, theta,
#' # latent state
#' library("dplyr")
#' library("ggplot2")
#' state_approx <- as.data.frame(out_approx, variable = "states") %>%
#' group_by(time) %>%
#' state_approx <- as.data.frame(out_approx, variable = "states") |>
#' group_by(time) |>
#' summarise(mean = mean(value))
#'
#' state_exact <- as.data.frame(out_is2, variable = "states") %>%
#' group_by(time) %>%
#' state_exact <- as.data.frame(out_is2, variable = "states") |>
#' group_by(time) |>
#' summarise(mean = weighted.mean(value, weight))
#'
#' dplyr::bind_rows(approx = state_approx,
#' exact = state_exact, .id = "method") %>%
#' filter(time > 200) %>%
#' exact = state_exact, .id = "method") |>
#' filter(time > 200) |>
#' ggplot(aes(time, mean, colour = method)) +
#' geom_line() +
#' theme_bw()
#'
#' # posterior means
#' p_approx <- predict(out_approx, model, type = "mean",
#' nsim = 1000, future = FALSE) %>%
#' group_by(time) %>%
#' nsim = 1000, future = FALSE) |>
#' group_by(time) |>
#' summarise(mean = mean(value))
#' p_exact <- predict(out_is2, model, type = "mean",
#' nsim = 1000, future = FALSE) %>%
#' group_by(time) %>%
#' nsim = 1000, future = FALSE) |>
#' group_by(time) |>
#' summarise(mean = mean(value))
#'
#' dplyr::bind_rows(approx = p_approx,
#' exact = p_exact, .id = "method") %>%
#' filter(time > 200) %>%
#' exact = p_exact, .id = "method") |>
#' filter(time > 200) |>
#' ggplot(aes(time, mean, colour = method)) +
#' geom_line() +
#' theme_bw()
Expand Down
38 changes: 19 additions & 19 deletions R/predict.R
Original file line number Diff line number Diff line change
Expand Up @@ -52,35 +52,35 @@
#' nsim = 1000)
#'
#' library("dplyr")
#' sumr_fit <- as.data.frame(mcmc_results, variable = "states") %>%
#' group_by(time, iter) %>%
#' sumr_fit <- as.data.frame(mcmc_results, variable = "states") |>
#' group_by(time, iter) |>
#' mutate(signal =
#' value[variable == "level"] +
#' value[variable == "seasonal_1"]) %>%
#' group_by(time) %>%
#' value[variable == "seasonal_1"]) |>
#' group_by(time) |>
#' summarise(mean = mean(signal),
#' lwr = quantile(signal, 0.025),
#' upr = quantile(signal, 0.975))
#'
#' sumr_pred <- pred %>%
#' group_by(time, sample) %>%
#' sumr_pred <- pred |>
#' group_by(time, sample) |>
#' mutate(signal =
#' value[variable == "level"] +
#' value[variable == "seasonal_1"]) %>%
#' group_by(time) %>%
#' value[variable == "seasonal_1"]) |>
#' group_by(time) |>
#' summarise(mean = mean(signal),
#' lwr = quantile(signal, 0.025),
#' upr = quantile(signal, 0.975))
#'
#' # If we used type = "mean", we could do
#' # sumr_pred <- pred %>%
#' # group_by(time) %>%
#' # sumr_pred <- pred |>
#' # group_by(time) |>
#' # summarise(mean = mean(value),
#' # lwr = quantile(value, 0.025),
#' # upr = quantile(value, 0.975))
#'
#' library("ggplot2")
#' rbind(sumr_fit, sumr_pred) %>%
#' rbind(sumr_fit, sumr_pred) |>
#' ggplot(aes(x = time, y = mean)) +
#' geom_ribbon(aes(ymin = lwr, ymax = upr),
#' fill = "#92f0a8", alpha = 0.25) +
Expand All @@ -96,23 +96,23 @@
#' meanrep <- predict(mcmc_results, model = model, type = "mean",
#' future = FALSE, nsim = 1000)
#'
#' sumr_yrep <- yrep %>%
#' group_by(time) %>%
#' sumr_yrep <- yrep |>
#' group_by(time) |>
#' summarise(earnings = mean(value),
#' lwr = quantile(value, 0.025),
#' upr = quantile(value, 0.975)) %>%
#' upr = quantile(value, 0.975)) |>
#' mutate(interval = "Observations")
#'
#' sumr_meanrep <- meanrep %>%
#' group_by(time) %>%
#' sumr_meanrep <- meanrep |>
#' group_by(time) |>
#' summarise(earnings = mean(value),
#' lwr = quantile(value, 0.025),
#' upr = quantile(value, 0.975)) %>%
#' upr = quantile(value, 0.975)) |>
#' mutate(interval = "Mean")
#'
#' rbind(sumr_meanrep, sumr_yrep) %>%
#' rbind(sumr_meanrep, sumr_yrep) |>
#' mutate(interval =
#' factor(interval, levels = c("Observations", "Mean"))) %>%
#' factor(interval, levels = c("Observations", "Mean"))) |>
#' ggplot(aes(x = time, y = earnings)) +
#' geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval),
#' alpha = 0.75) +
Expand Down
12 changes: 6 additions & 6 deletions R/run_mcmc.R
Original file line number Diff line number Diff line change
Expand Up @@ -325,17 +325,17 @@ run_mcmc.lineargaussian <- function(model, iter, output_type = "full",
#' library("ggplot2")
#'
#' # compute summary statistics
#' level_sumr <- d_states %>%
#' filter(variable == "level") %>%
#' group_by(time) %>%
#' level_sumr <- d_states |>
#' filter(variable == "level") |>
#' group_by(time) |>
#' summarise(mean = diagis::weighted_mean(value, weight),
#' lwr = diagis::weighted_quantile(value, weight,
#' 0.025),
#' upr = diagis::weighted_quantile(value, weight,
#' 0.975))
#'
#' # visualize
#' level_sumr %>% ggplot(aes(x = time, y = mean)) +
#' level_sumr |> ggplot(aes(x = time, y = mean)) +
#' geom_line() +
#' geom_line(aes(y = lwr), linetype = "dashed", na.rm = TRUE) +
#' geom_line(aes(y = upr), linetype = "dashed", na.rm = TRUE) +
Expand Down Expand Up @@ -376,8 +376,8 @@ run_mcmc.lineargaussian <- function(model, iter, output_type = "full",
#' # Note small number of iterations for CRAN checks
#' out <- run_mcmc(model, iter = 4000, mcmc_type = "approx")
#'
#' sumr <- as.data.frame(out, variable = "states") %>%
#' group_by(time) %>% mutate(value = exp(value)) %>%
#' sumr <- as.data.frame(out, variable = "states") |>
#' group_by(time) |> mutate(value = exp(value)) |>
#' summarise(mean = mean(value),
#' ymin = quantile(value, 0.05), ymax = quantile(value, 0.95))
#' ggplot(sumr, aes(time, mean)) +
Expand Down
12 changes: 6 additions & 6 deletions R/summary.R
Original file line number Diff line number Diff line change
Expand Up @@ -87,9 +87,9 @@ summary.mcmc_output <- function(object, return_se = FALSE, variable = "theta",
}
if (variable %in% c("theta", "both")) {
sumr_theta <-
as.data.frame(object, variable = "theta", expand = TRUE) %>%
group_by(.data$variable) %>%
summarise(as_tibble(as.list(summary_f(.data$value, .data$weight)))) %>%
as.data.frame(object, variable = "theta", expand = TRUE) |>
group_by(.data$variable) |>
summarise(as_tibble(as.list(summary_f(.data$value, .data$weight)))) |>
as.data.frame()
if (variable == "theta") return(sumr_theta)
}
Expand Down Expand Up @@ -117,9 +117,9 @@ summary.mcmc_output <- function(object, return_se = FALSE, variable = "theta",

sumr_states <-
as.data.frame(object, variable = "states", expand = TRUE,
times = times, states = states, use_times = use_times) %>%
group_by(.data$variable, .data$time) %>%
summarise(as_tibble(as.list(summary_f(.data$value, .data$weight)))) %>%
times = times, states = states, use_times = use_times) |>
group_by(.data$variable, .data$time) |>
summarise(as_tibble(as.list(summary_f(.data$value, .data$weight)))) |>
as.data.frame()
if (variable == "states") return(sumr_states)
}
Expand Down
18 changes: 9 additions & 9 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ set.seed(1)
data("airquality", package = "datasets")
# Covariates as matrix. For complex cases, check out as_bssm function
xreg <- airquality %>% select(Wind, Temp) %>% as.matrix()
xreg <- airquality |> select(Wind, Temp) |> as.matrix()
model <- bsm_lg(airquality$Ozone,
xreg = xreg,
Expand All @@ -152,10 +152,10 @@ fit <- run_mcmc(model, iter = 20000, burnin = 5000)
fit
obs <- data.frame(Time = 1:nrow(airquality),
Ozone = airquality$Ozone) %>% filter(!is.na(Ozone))
Ozone = airquality$Ozone) |> filter(!is.na(Ozone))
pred <- fitted(fit, model)
pred %>%
pred |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
Expand Down Expand Up @@ -185,7 +185,7 @@ Comparison:
```{r compare}
pred2 <- fitted(fit2, model2)
bind_rows(list(Gaussian = pred, Gamma = pred2), .id = "Model") %>%
bind_rows(list(Gaussian = pred, Gamma = pred2), .id = "Model") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`, fill = Model),
alpha = 0.25) +
Expand Down Expand Up @@ -214,7 +214,7 @@ We combine these two models as a bivariate Gaussian model with `ssm_mlg`:

```{r missing-values}
# predictors (not including solar radiation) for ozone
xreg <- airquality %>% select(Wind, Temp) %>% as.matrix()
xreg <- airquality |> select(Wind, Temp) |> as.matrix()
# Function which outputs new model components given the parameter vector theta
update_fn <- function(theta) {
Expand Down Expand Up @@ -252,9 +252,9 @@ Draw predictions:
pred <- fitted(fit, model)
obs <- data.frame(Time = 1:nrow(airquality),
Solar = airquality$Solar.R) %>% filter(!is.na(Solar))
Solar = airquality$Solar.R) |> filter(!is.na(Solar))
pred %>% filter(Variable == "Solar") %>%
pred |> filter(Variable == "Solar") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
Expand All @@ -265,9 +265,9 @@ pred %>% filter(Variable == "Solar") %>%
obs <- data.frame(Time = 1:nrow(airquality),
Ozone = airquality$Ozone) %>% filter(!is.na(Ozone))
Ozone = airquality$Ozone) |> filter(!is.na(Ozone))
pred %>% filter(Variable == "Ozone") %>%
pred |> filter(Variable == "Ozone") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
Expand Down
Loading

0 comments on commit 97b489e

Please sign in to comment.