forked from blynn/compiler
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarginally.hs
1604 lines (1429 loc) · 53.7 KB
/
marginally.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- Off-side rule.
infixr 9 .;
infixl 7 * , `div` , `mod`;
infixl 6 + , -;
infixr 5 ++;
infixl 4 <*> , <$> , <* , *>;
infix 4 == , /= , <=;
infixl 3 && , <|>;
infixl 2 ||;
infixl 1 >> , >>=;
infixr 0 $;
ffi "putchar" putChar :: Int -> IO Int;
ffi "getchar" getChar :: IO Int;
ffi "getargcount" getArgCount :: IO Int;
ffi "getargchar" getArgChar :: Int -> Int -> IO Char;
class Functor f where { fmap :: (a -> b) -> f a -> f b };
class Applicative f where
{ pure :: a -> f a
; (<*>) :: f (a -> b) -> f a -> f b
};
class Monad m where
{ return :: a -> m a
; (>>=) :: m a -> (a -> m b) -> m b
};
(<$>) = fmap;
liftA2 f x y = f <$> x <*> y;
(>>) f g = f >>= \_ -> g;
class Eq a where { (==) :: a -> a -> Bool };
instance Eq Int where { (==) = intEq };
instance Eq Char where { (==) = charEq };
($) f x = f x;
id x = x;
const x y = x;
flip f x y = f y x;
(&) x f = f x;
class Ord a where { (<=) :: a -> a -> Bool };
instance Ord Int where { (<=) = intLE };
instance Ord Char where { (<=) = charLE };
data Ordering = LT | GT | EQ;
compare x y = if x <= y then if y <= x then EQ else LT else GT;
instance Ord a => Ord [a] where {
(<=) xs ys = case xs of
{ [] -> True
; x:xt -> case ys of
{ [] -> False
; y:yt -> case compare x y of
{ LT -> True
; GT -> False
; EQ -> xt <= yt
}
}
}
};
data Maybe a = Nothing | Just a;
data Either a b = Left a | Right b;
fpair (x, y) f = f x y;
fst (x, y) = x;
snd (x, y) = y;
uncurry f (x, y) = f x y;
first f (x, y) = (f x, y);
second f (x, y) = (x, f y);
not a = if a then False else True;
x /= y = not $ x == y;
(.) f g x = f (g x);
(||) f g = if f then True else g;
(&&) f g = if f then g else False;
flst xs n c = case xs of { [] -> n; h:t -> c h t };
instance Eq a => Eq [a] where { (==) xs ys = case xs of
{ [] -> case ys of
{ [] -> True
; _ -> False
}
; x:xt -> case ys of
{ [] -> False
; y:yt -> x == y && xt == yt
}
}};
take n xs = if n == 0 then [] else flst xs [] \h t -> h:take (n - 1) t;
maybe n j m = case m of { Nothing -> n; Just x -> j x };
instance Functor Maybe where { fmap f = maybe Nothing (Just . f) };
instance Applicative Maybe where { pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf };
instance Monad Maybe where { return = Just ; mf >>= mg = maybe Nothing mg mf };
foldr c n l = flst l n (\h t -> c h(foldr c n t));
length = foldr (\_ n -> n + 1) 0;
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure []);
mapM_ f = foldr ((>>) . f) (pure ());
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0;
instance Applicative IO where { pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y) };
instance Monad IO where { return = ioPure ; (>>=) = ioBind };
instance Functor IO where { fmap f x = ioPure f <*> x };
putStr = mapM_ $ putChar . ord;
getContents = getChar >>= \n -> if 0 <= n then (chr n:) <$> getContents else pure [];
interact f = getContents >>= putStr . f;
error s = unsafePerformIO $ putStr s >> putChar (ord '\n') >> exitSuccess;
undefined = error "undefined";
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l;
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a;
foldl1 f (h:t) = foldl f h t;
elem k xs = foldr (\x t -> x == k || t) False xs;
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
map = flip (foldr . ((:) .)) [];
instance Functor [] where { fmap = map };
concatMap = (concat .) . map;
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing;
all f = foldr (&&) True . map f;
any f = foldr (||) False . map f;
upFrom n = n : upFrom (n + 1);
zipWith f xs ys = flst xs [] $ \x xt -> flst ys [] $ \y yt -> f x y : zipWith f xt yt;
zip = zipWith (,);
data State s a = State (s -> (a, s));
runState (State f) = f;
instance Functor (State s) where { fmap f = \(State h) -> State (first f . h) };
instance Applicative (State s) where
{ pure a = State (a,)
; (State f) <*> (State x) = State \s -> fpair (f s) \g s' -> first g $ x s'
};
instance Monad (State s) where
{ return a = State (a,)
; (State h) >>= f = State $ uncurry (runState . f) . h
};
evalState m s = fst $ runState m s;
get = State \s -> (s, s);
put n = State \s -> ((), n);
either l r e = case e of { Left x -> l x; Right x -> r x };
instance Functor (Either a) where { fmap f e = case e of
{ Left x -> Left x
; Right x -> Right $ f x
}
};
instance Applicative (Either a) where { pure = Right ; ef <*> ex = case ef of
{ Left s -> Left s
; Right f -> case ex of
{ Left s -> Left s
; Right x -> Right $ f x
}
}
};
instance Monad (Either a) where { return = Right ; ex >>= f = case ex of
{ Left s -> Left s
; Right x -> f x
}
};
class Alternative f where { empty :: f a ; (<|>) :: f a -> f a -> f a };
asum = foldr (<|>) empty;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];
between x y p = x *> (p <* y);
-- Map.
data Map k a = Tip | Bin Int k a (Map k a) (Map k a);
size m = case m of { Tip -> 0 ; Bin sz _ _ _ _ -> sz };
node k x l r = Bin (1 + size l + size r) k x l r;
singleton k x = Bin 1 k x Tip Tip;
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr;
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
node rlk rlkx (node k x l rll) (node rk rkx rlr rr);
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r);
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
node lrk lrkx (node lk lkx ll lrl) (node k x lrr r);
balance k x l r = (if size l + size r <= 1
then node
else if 5 * size l + 3 <= 2 * size r
then case r of
{ Tip -> node
; Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
then singleL
else doubleL
}
else if 5 * size r + 3 <= 2 * size l
then case l of
{ Tip -> node
; Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
then singleR
else doubleR
}
else node
) k x l r;
insert kx x t = case t of
{ Tip -> singleton kx x
; Bin sz ky y l r -> case compare kx ky of
{ LT -> balance ky y (insert kx x l) r
; GT -> balance ky y l (insert kx x r)
; EQ -> Bin sz kx x l r
}
};
insertWith f kx x t = case t of
{ Tip -> singleton kx x
; Bin sy ky y l r -> case compare kx ky of
{ LT -> balance ky y (insertWith f kx x l) r
; GT -> balance ky y l (insertWith f kx x r)
; EQ -> Bin sy kx (f x y) l r
}
};
mlookup kx t = case t of
{ Tip -> Nothing
; Bin _ ky y l r -> case compare kx ky of
{ LT -> mlookup kx l
; GT -> mlookup kx r
; EQ -> Just y
}
};
fromList = foldl (\t (k, x) -> insert k x t) Tip;
foldrWithKey f = let
{ go z t = case t of
{ Tip -> z
; Bin _ kx x l r -> go (f kx x (go z r)) l
}
} in go;
toAscList = foldrWithKey (\k x xs -> (k,x):xs) [];
-- Syntax tree.
data Type = TC String | TV String | TAp Type Type;
arr a b = TAp (TAp (TC "->") a) b;
data Extra = Basic String | ForeignFun Int | Const Int | ChrCon Char | StrCon String;
data Pat = PatLit Extra | PatVar String (Maybe Pat) | PatCon String [Pat];
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Ca Ast [(Pat, Ast)] | Proof Pred;
data Constr = Constr String [Type];
data Pred = Pred String Type;
data Qual = Qual [Pred] Type;
noQual = Qual [];
data Neat = Neat
-- | Instance environment.
(Map String [(String, Qual)])
-- | Instance definitions.
[(String, (Qual, [(String, Ast)]))]
-- | Top-level definitions
[(String, Ast)]
-- | Typed ASTs, ready for compilation, including ADTs and methods,
-- e.g. (==), (Eq a => a -> a -> Bool, select-==)
[(String, (Qual, Ast))]
-- | Data constructor table.
(Map String [Constr])
-- | FFI declarations.
[(String, Type)]
-- | Exports.
[(String, String)]
;
ro = E . Basic;
conOf (Constr s _) = s;
specialCase (h:_) = '|':conOf h;
mkCase t cs = (specialCase cs,
( noQual $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
, ro "I"));
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", []);
scottEncode _ ":" _ = ro "CONS";
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs);
scottConstr t cs c = case c of { Constr s ts -> (s,
( noQual $ foldr arr t ts
, scottEncode (map conOf cs) s $ mkStrs ts)) };
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs;
showInt' n = if 0 == n then id else (showInt' $ n`div`10) . ((:) (chr $ 48+n`mod`10));
showInt n = if 0 == n then ('0':) else showInt' n;
mkFFIHelper n t acc = case t of
{ TC s -> acc
; TAp (TC "IO") _ -> acc
; TAp (TAp (TC "->") x) y -> L (showInt n "") $ mkFFIHelper (n + 1) y $ A (V $ showInt n "") acc
};
updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs;
addAdt t cs (Neat ienv defs fs typed dcs ffis exs) =
Neat ienv defs fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis exs;
addClass classId v ms (Neat ienv idefs fs typed dcs ffis exs) = let
{ vars = zipWith (\_ n -> showInt n "") ms $ upFrom 0
} in Neat ienv idefs fs (zipWith (\var (s, t) ->
(s, (Qual [Pred classId v] t,
L "@" $ A (V "@") $ foldr L (V var) vars))) vars ms ++ typed) dcs ffis exs;
dictName cl (Qual _ t) = '{':cl ++ (' ':showType t "") ++ "}";
addInst cl q ds (Neat ienv idefs fs typed dcs ffis exs) = let { name = dictName cl q } in
Neat (insertWith (++) cl [(name, q)] ienv) ((name, (q, ds)):idefs) fs typed dcs ffis exs;
addFFI foreignname ourname t (Neat ienv idefs fs typed dcs ffis exs) =
Neat ienv idefs fs ((ourname, (Qual [] t, mkFFIHelper 0 t $ E $ ForeignFun $ length ffis)) : typed) dcs ((foreignname, t):ffis) exs;
addDefs ds (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs (ds ++ fs) typed dcs ffis exs;
addExport e f (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs fs typed dcs ffis ((e, f):exs);
-- Lexer.
lex (Lexer f) inp = f inp;
data LexState = LexState String (Int, Int);
data Lexer a = Lexer (LexState -> Either String (a, LexState));
instance Functor Lexer where { fmap f (Lexer x) = Lexer $ fmap (first f) . x };
instance Applicative Lexer where
{ pure x = Lexer \inp -> Right (x, inp)
; f <*> x = Lexer \inp -> case lex f inp of
{ Left e -> Left e
; Right (fun, t) -> case lex x t of
{ Left e -> Left e
; Right (arg, u) -> Right (fun arg, u)
}
}
};
instance Monad Lexer where
{ return = pure
; x >>= f = Lexer \inp -> case lex x inp of
{ Left e -> Left e
; Right (a, t) -> lex (f a) t
}
};
instance Alternative Lexer where
{ empty = Lexer \_ -> Left ""
; (<|>) x y = Lexer \inp -> either (const $ lex y inp) Right $ lex x inp
};
advanceRC x (r, c)
| n `elem` [10, 11, 12, 13] = (r + 1, 1)
| n == 9 = (r, (c + 8)`mod`8)
| True = (r, c + 1)
where { n = ord x }
;
pos = Lexer \inp@(LexState _ rc) -> Right (rc, inp);
sat f = Lexer \(LexState inp rc) -> flst inp (Left "EOF") \h t ->
if f h then Right (h, LexState t $ advanceRC h rc) else Left "unsat";
char c = sat (c ==);
data Token = Reserved String
| VarId String | VarSym String | ConId String | ConSym String
| Lit Extra;
hexValue d
| d <= '9' = ord d - ord '0'
| d <= 'F' = 10 + ord d - ord 'A'
| d <= 'f' = 10 + ord d - ord 'a';
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160];
isNewline c = ord c `elem` [10, 11, 12, 13];
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:");
dashes = char '-' *> some (char '-');
comment = dashes *> (sat isNewline <|> sat (not . isSymbol) *> many (sat $ not . isNewline) *> sat isNewline);
small = sat \x -> ((x <= 'z') && ('a' <= x)) || (x == '_');
large = sat \x -> (x <= 'Z') && ('A' <= x);
hexit = sat \x -> (x <= '9') && ('0' <= x)
|| (x <= 'F') && ('A' <= x)
|| (x <= 'f') && ('a' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit;
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit;
escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n');
tokOne delim = escape <|> sat (delim /=);
tokChar = between (char '\'') (char '\'') (tokOne '\'');
tokStr = between (char '"') (char '"') $ many (tokOne '"');
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal;
literal = Lit . Const <$> integer <|> Lit . ChrCon <$> tokChar <|> Lit . StrCon <$> tokStr;
varId = fmap ck $ liftA2 (:) small $ many (small <|> large <|> digit <|> char '\'') where
{ ck s = (if elem s
["ffi", "export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
then Reserved else VarId) s };
varSym = fmap ck $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol) where
{ ck s = (if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then Reserved else VarSym) s };
conId = fmap ConId $ liftA2 (:) large $ many (small <|> large <|> digit <|> char '\'');
conSym = fmap ck $ liftA2 (:) (char ':') $ many $ sat isSymbol where
{ ck s = (if elem s [":", "::"] then Reserved else ConSym) s };
special = Reserved . (:"") <$> asum (char <$> "(),;[]`{}");
rawBody = (char '|' *> char ']' *> pure []) <|> (:) <$> sat (const True) <*> rawBody;
rawQQ = char '[' *> char 'r' *> char '|' *> (Lit . StrCon <$> rawBody);
lexeme = rawQQ <|> varId <|> varSym <|> conId <|> conSym
<|> special <|> literal;
whitespace = many (sat isSpace <|> comment);
lexemes = whitespace *> many (lexeme <* whitespace);
getPos = Lexer \st@(LexState _ rc) -> Right (rc, st);
posLexemes = whitespace *> many (liftA2 (,) getPos lexeme <* whitespace);
-- Layout.
data Landin = Curly Int | Angle Int | PL ((Int, Int), Token);
beginLayout xs = case xs of
{ [] -> [Curly 0]
; ((r', _), Reserved "{"):_ -> margin r' xs
; ((r', c'), _):_ -> Curly c' : margin r' xs
};
landin ls@(((r, _), Reserved "{"):_) = margin r ls;
landin ls@(((r, c), _):_) = Curly c : margin r ls;
landin [] = [];
margin r ls@(((r', c), _):_) | r /= r' = Angle c : embrace ls;
margin r ls = embrace ls;
embrace ls@(x@(_, Reserved w):rest) | elem w ["let", "where", "do", "of"] =
PL x : beginLayout rest;
embrace ls@(x@(_, Reserved "\\"):y@(_, Reserved "case"):rest) =
PL x : PL y : beginLayout rest;
embrace (x@((r,_),_):xt) = PL x : margin r xt;
embrace [] = [];
data Ell = Ell [Landin] [Int];
insPos x ts ms = Right (x, Ell ts ms);
ins w = insPos ((0, 0), Reserved w);
ell (Ell toks cols) = case toks of
{ t:ts -> case t of
{ Angle n -> case cols of
{ m:ms | m == n -> ins ";" ts (m:ms)
| n + 1 <= m -> ins "}" (Angle n:ts) ms
; _ -> ell $ Ell ts cols
}
; Curly n -> case cols of
{ m:ms | m + 1 <= n -> ins "{" ts (n:m:ms)
; [] | 1 <= n -> ins "{" ts [n]
; _ -> ell $ Ell (PL ((0,0),Reserved "{"): PL ((0,0),Reserved "}"):Angle n:ts) cols
}
; PL x -> case snd x of
{ Reserved "}" -> case cols of
{ 0:ms -> ins "}" ts ms
; _ -> Left "unmatched }"
}
; Reserved "{" -> insPos x ts (0:cols)
; _ -> insPos x ts cols
}
}
; [] -> case cols of
{ [] -> Left "EOF"
; m:ms | m /= 0 -> ins "}" [] ms
; _ -> Left "missing }"
}
};
parseErrorRule (Ell toks cols) = case cols of
{ m:ms | m /= 0 -> Right $ Ell toks ms
; _ -> Left "missing }"
};
-- Parser.
data ParseState = ParseState Ell (Map String (Int, Assoc));
data Parser a = Parser (ParseState -> Either String (a, ParseState));
getPrecs = Parser \st@(ParseState _ precs) -> Right (precs, st);
putPrecs precs = Parser \(ParseState s _) -> Right ((), ParseState s precs);
parse (Parser f) inp = f inp;
instance Applicative Parser where
{ pure x = Parser \inp -> Right (x, inp)
; x <*> y = Parser \inp -> case parse x inp of
{ Left e -> Left e
; Right (fun, t) -> case parse y t of
{ Left e -> Left e
; Right (arg, u) -> Right (fun arg, u)
}
}
};
instance Monad Parser where
{ return = pure
; (>>=) x f = Parser \inp -> case parse x inp of
{ Left e -> Left e
; Right (a, t) -> parse (f a) t
}
};
instance Functor Parser where { fmap f x = pure f <*> x };
instance Alternative Parser where
{ empty = Parser \_ -> Left ""
; x <|> y = Parser \inp -> either (const $ parse y inp) Right $ parse x inp
};
want f = Parser \(ParseState inp precs) -> case ell inp of
{ Right ((_, x), inp') -> (, ParseState inp' precs) <$> f x
; Left e -> Left e
};
braceYourself = Parser \(ParseState inp precs) -> case ell inp of
{ Right ((_, Reserved "}"), inp') -> Right ((), ParseState inp' precs)
; _ -> case parseErrorRule inp of
{ Left e -> Left e
; Right inp' -> Right ((), ParseState inp' precs)
}
};
res w = want \case
{ Reserved s | s == w -> Right s
; _ -> Left $ "want \"" ++ w ++ "\""
};
wantInt = want \case
{ Lit (Const i) -> Right i
; _ -> Left "want integer"
};
wantString = want \case
{ Lit (StrCon s) -> Right s
; _ -> Left "want string"
};
wantConId = want \case
{ ConId s -> Right s
; _ -> Left "want conid"
};
wantVarId = want \case
{ VarId s -> Right s
; _ -> Left "want varid"
};
wantLit = want \case
{ Lit x -> Right x
; _ -> Left "want literal"
};
paren = between (res "(") (res ")");
braceSep f = between (res "{") braceYourself $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) (res ";");
patVars = \case
{ PatLit _ -> []
; PatVar s m -> s : maybe [] patVars m
; PatCon _ args -> concat $ patVars <$> args
};
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys;
fv bound = \case
{ V s | not (elem s bound) -> [s]
; A x y -> fv bound x `union` fv bound y
; L s t -> fv (s:bound) t
; _ -> []
};
fvPro bound expr = case expr of
{ V s | not (elem s bound) -> [s]
; A x y -> fvPro bound x `union` fvPro bound y
; L s t -> fvPro (s:bound) t
; Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
; Ca x as -> fvPro bound x `union` fvPro bound (Pa $ first (:[]) <$> as)
; _ -> []
};
overFree s f t = case t of
{ E _ -> t
; V s' -> if s == s' then f t else t
; A x y -> A (overFree s f x) (overFree s f y)
; L s' t' -> if s == s' then t else L s' $ overFree s f t'
};
overFreePro s f t = case t of
{ E _ -> t
; V s' -> if s == s' then f t else t
; A x y -> A (overFreePro s f x) (overFreePro s f y)
; L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
; Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts
; Ca x as -> Ca (overFreePro s f x) $ (\(p, t) -> (p, if elem s $ patVars p then t else overFreePro s f t)) <$> as
};
beta s t x = overFree s (const t) x;
maybeFix s x = if elem s $ fvPro [] x then A (ro "Y") (L s x) else x;
nonemptyTails [] = [];
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt;
addLets ls x = let
{ vs = fst <$> ls
; ios = foldr (\(s, dsts) (ins, outs) ->
(foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
(Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
; components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
; triangle names expr = let
{ tnames = nonemptyTails names
; suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
; insLams vs t = foldr L t vs
} in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined id $ lookup x ls) (suball expr) tnames
} in foldr triangle x components;
data Assoc = NAssoc | LAssoc | RAssoc;
instance Eq Assoc where
{ NAssoc == NAssoc = True
; LAssoc == LAssoc = True
; RAssoc == RAssoc = True
; _ == _ = False
};
precOf s precTab = maybe 9 fst $ mlookup s precTab;
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab;
parseErr s = Parser $ const $ Left s;
opFold precTab f x xs = case xs of
{ [] -> pure x
; (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
{ Nothing -> case assocOf op precTab of
{ NAssoc -> case xt of
{ [] -> pure $ f op x y
; y:yt -> parseErr "NAssoc repeat"
}
; LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
; RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
}
; Just y -> parseErr "Assoc clash"
}
};
qconop = want f <|> between (res "`") (res "`") (want g) where
{ f (ConSym s) = Right s
; f (Reserved ":") = Right ":"
; f _ = Left ""
; g (ConId s) = Right s
; g _ = Left "want qconop"
};
wantVarSym = want \case
{ VarSym s -> Right s
; _ -> Left "want VarSym"
};
wantqconsym = want \case
{ ConSym s -> Right s
; Reserved ":" -> Right ":"
; _ -> Left "want qconsym"
};
op = wantqconsym <|> want f <|> between (res "`") (res "`") (want g) where
{ f (VarSym s) = Right s
; f _ = Left ""
; g (VarId s) = Right s
; g (ConId s) = Right s
; g _ = Left "want op"
};
con = wantConId <|> paren wantqconsym;
var = wantVarId <|> paren wantVarSym;
tycon = want \case
{ ConId s -> Right $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s
; _ -> Left "want type constructor"
};
aType =
res "(" *>
( res ")" *> pure (TC "()")
<|> ((&) <$> _type <*> ((res "," *> ((\a b -> TAp (TAp (TC ",") b) a) <$> _type)) <|> pure id)
) <* res ")")
<|> tycon
<|> TV <$> wantVarId
<|> (res "[" *> (res "]" *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* res "]")));
bType = foldl1 TAp <$> some aType;
_type = foldr1 arr <$> sepBy bType (res "->");
fixityList a = wantInt >>= \n -> sepBy op (res ",") >>= \os ->
getPrecs >>= \precs -> putPrecs (foldr (\o m -> insert o (n, a) m) precs os) >>
pure id;
fixityDecl w a = res w *> fixityList a;
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;
genDecl = (,) <$> var <*> (res "::" *> _type);
classDecl = res "class" *> (addClass <$> wantConId <*> (TV <$> wantVarId) <*> (res "where" *> braceSep genDecl));
simpleClass = Pred <$> wantConId <*> _type;
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass $ res ",");
instDecl = res "instance" *>
((\ps cl ty defs -> addInst cl (Qual ps ty) defs) <$>
(scontext <* res "=>" <|> pure [])
<*> wantConId <*> _type <*> (res "where" *> braceDef));
letin = addLets <$> between (res "let") (res "in") braceDef <*> expr;
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
(res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr);
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]");
alts = braceSep $ (,) <$> pat <*> guards "->";
cas = Ca <$> between (res "case") (res "of") expr <*> alts;
lamCase = res "case" *> (L "\\case" . Ca (V "\\case") <$> alts);
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr));
flipPairize y x = A (A (V ",") x) y;
thenComma = res "," *> ((flipPairize <$> expr) <|> pure (A (V ",")));
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id);
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> res ",")) <*> expr;
section = res "(" *> (parenExpr <* res ")" <|> rightSect <* res ")" <|> res ")" *> pure (V "()"));
maybePureUnit = maybe (V "pure" `A` V "()") id;
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
<|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
<|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef);
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt);
atom = ifthenelse <|> doblock <|> letin <|> listify <$> sqList expr <|> section
<|> cas <|> lam <|> (paren (res ",") *> pure (V ","))
<|> fmap V (con <|> var) <|> E <$> wantLit;
aexp = foldl1 A <$> some atom;
withPrec precTab n p = p >>= \s ->
if n == precOf s precTab then pure s else Parser $ const $ Left "";
exprP n = if n <= 9
then getPrecs >>= \precTab
-> exprP (succ n) >>= \a
-> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
-> opFold precTab (\op x y -> A (A (V op) x) y) a as
else aexp;
expr = exprP 0;
sqList r = between (res "[") (res "]") $ sepBy r (res ",");
gcon = wantConId <|> paren (wantqconsym <|> res ",") <|> ((++) <$> res "[" <*> (res "]"));
apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
<|> flip PatVar Nothing <$> (res "_" *> pure "_")
<|> flip PatCon [] <$> gcon
<|> PatLit <$> wantLit
<|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" []) <$> sqList pat
<|> paren ((&) <$> pat <*> ((res "," *> ((\y x -> PatCon "," [x, y]) <$> pat)) <|> pure id))
;
binPat f x y = PatCon f [x, y];
patP n = if n <= 9
then getPrecs >>= \precTab
-> patP (succ n) >>= \a
-> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
-> opFold precTab binPat a as
else PatCon <$> gcon <*> many apat <|> apat
;
pat = patP 0;
maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id);
guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "pjoin#") <$> some ((\x y -> case x of
{ V "True" -> \_ -> y
; _ -> A (A (A (V "if") x) y)
}) <$> (res "|" *> expr) <*> (res s *> expr));
onePat vs x = Pa [(vs, x)];
opDef x f y rhs = [(f, onePat [x, y] rhs)];
leftyPat p expr = case patVars p of
{ [] -> []
; (h:t) -> let { gen = '@':h } in
(gen, expr):map (\v -> (v, Ca (V gen) [(p, V v)])) (patVars p)
};
def = liftA2 (\l r -> [(l, r)]) var (liftA2 onePat (many apat) $ guards "=")
<|> (pat >>= \x -> opDef x <$> wantVarSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=");
coalesce ds = flst ds [] \h@(s, x) t -> flst t [h] \(s', x') t' -> let
{ f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
; f _ _ = error "bad multidef"
} in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
;
defSemi = coalesce . concat <$> sepBy1 def (some $ res ";");
braceDef = concat <$> braceSep defSemi;
simpleType c vs = foldl TAp (TC c) (map TV vs);
conop = want f <|> between (res "`") (res "`") (want g) where
{ f (ConSym s) = Right s
; f _ = Left ""
; g (ConId s) = Right s
; g _ = Left "want qconop"
};
constr = (\x c y -> Constr c [x, y]) <$> aType <*> conop <*> aType
<|> Constr <$> wantConId <*> many aType;
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> wantConId <*> many wantVarId) <*> sepBy constr (res "|");
topdecls = braceSep
( adt
<|> classDecl
<|> instDecl
<|> res "ffi" *> (addFFI <$> wantString <*> var <*> (res "::" *> _type))
<|> res "export" *> (addExport <$> wantString <*> var)
<|> addDefs <$> defSemi
<|> fixity
);
offside xs = Ell (landin xs) [];
program s = case lex posLexemes $ LexState s (1, 1) of
{ Left e -> Left e
; Right (xs, LexState [] _) -> parse topdecls $ ParseState (offside xs) $ insert ":" (5, RAssoc) Tip;
; Right (_, st) -> Left "unlexable"
};
-- Primitives.
primAdts =
[ addAdt (TC "()") [Constr "()" []]
, addAdt (TC "Bool") [Constr "True" [], Constr "False" []]
, addAdt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
, addAdt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]];
prims = let
{ ii = arr (TC "Int") (TC "Int")
; iii = arr (TC "Int") ii
; bin s = A (ro "Q") (ro s) } in map (second (first noQual)) $
[ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
, ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
, ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
, ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
, ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
, ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
, ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
, ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
, ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), A (A (ro "B") (ro "C")) (ro "T")))
, ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))),
A (A (ro "B") (ro "C")) (A (A (ro "B") (ro "T")) (ro "REF"))))
, ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
A (ro "T") (ro "READREF")))
, ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
A (A (ro "R") (ro "WRITEREF")) (ro "B")))
, ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
, ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
, ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
] ++ map (\(s, v) -> (s, (iii, bin v)))
[ ("+", "ADD")
, ("-", "SUB")
, ("*", "MUL")
, ("div", "DIV")
, ("mod", "MOD")
, ("intAdd", "ADD")
, ("intSub", "SUB")
, ("intMul", "MUL")
, ("intDiv", "DIV")
, ("intMod", "MOD")
];
-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass Extra | PassVar String | La LC | App LC LC;
debruijn n e = case e of
{ E x -> Pass x
; V v -> maybe (PassVar v) id $
foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
; A x y -> App (debruijn n x) (debruijn n y)
; L s t -> La (debruijn (s:n) t)
};
-- Kiselyov bracket abstraction.
data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree;
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem;
lf = Lf . Basic;
ldef y = case y of
{ Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
; Closed d -> Need $ Closed (Nd (lf "T") d)
; Need e -> Need $ (Closed (Nd (lf "S") (lf "I"))) ## e
; Weak e -> Need $ (Closed (lf "T")) ## e
};
lclo d y = case y of
{ Defer -> Need $ Closed d
; Closed dd -> Closed $ Nd d dd
; Need e -> Need $ (Closed (Nd (lf "B") d)) ## e
; Weak e -> Weak $ (Closed d) ## e
};
lnee e y = case y of
{ Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
; Closed d -> Need $ Closed (Nd (lf "R") d) ## e
; Need ee -> Need $ Closed (lf "S") ## e ## ee
; Weak ee -> Need $ Closed (lf "C") ## e ## ee
};
lwea e y = case y of
{ Defer -> Need e
; Closed d -> Weak $ e ## Closed d
; Need ee -> Need $ (Closed (lf "B")) ## e ## ee
; Weak ee -> Weak $ e ## ee
};
x ## y = case x of
{ Defer -> ldef y
; Closed d -> lclo d y
; Need e -> lnee e y
; Weak e -> lwea e y
};
babs t = case t of
{ Ze -> Defer
; Su x -> Weak (babs x)
; Pass x -> Closed (Lf x)
; PassVar s -> Closed (LfVar s)
; La t -> case babs t of
{ Defer -> Closed (lf "I")
; Closed d -> Closed (Nd (lf "K") d)
; Need e -> e
; Weak e -> Closed (lf "K") ## e
}
; App x y -> babs x ## babs y
};
nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x;
optim t = let
{ go (Lf (Basic "I")) q = q
; go p q@(Lf (Basic c)) = case c of
{ "I" -> case p of
{ Lf (Basic "C") -> lf "T"
; Lf (Basic "B") -> lf "I"
; Nd p1 p2 -> case p1 of
{ Lf (Basic "B") -> p2
; Lf (Basic "R") -> Nd (lf "T") p2
; _ -> Nd (Nd p1 p2) q
}
; _ -> Nd p q
}
; "T" -> case p of
{ Nd (Lf (Basic "B")) (Lf (Basic "C")) -> lf "V"
; _ -> Nd p q
}
; _ -> Nd p q
}
; go p q = Nd p q
} in case t of
{ Nd x y -> go (optim x) (optim y)
; _ -> t
};
freeCount v expr = case expr of
{ E _ -> 0
; V s -> if s == v then 1 else 0
; A x y -> freeCount v x + freeCount v y
; L w t -> if v == w then 0 else freeCount v t
};
app01 s x = let { n = freeCount s x } in case n of
{ 0 -> const x
; 1 -> flip (beta s) x
; _ -> A $ L s x
};
optiApp t = case t of
{ A (L s x) y -> app01 s (optiApp x) (optiApp y)
; A x y -> A (optiApp x) (optiApp y)
; L s x -> L s (optiApp x)
; _ -> t
};
-- Type checking.
apply sub t = case t of
{ TC v -> t
; TV v -> maybe t id $ lookup v sub
; TAp a b -> TAp (apply sub a) (apply sub b)
};
(@@) s1 s2 = map (second (apply s1)) s2 ++ s1;
occurs s t = case t of
{ TC v -> False
; TV v -> s == v
; TAp a b -> occurs s a || occurs s b
};
varBind s t = case t of
{ TC v -> Right [(s, t)]
; TV v -> Right $ if v == s then [] else [(s, t)]
; TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]
};
mgu t u = case t of
{ TC a -> case u of
{ TC b -> if a == b then Right [] else Left "TC-TC clash"
; TV b -> varBind b t
; TAp a b -> Left "TC-TAp clash"
}
; TV a -> varBind a u
; TAp a b -> case u of
{ TC b -> Left "TAp-TC clash"
; TV b -> varBind b t
; TAp c d -> mgu a c >>= unify b d
}
};
unify a b s = (@@ s) <$> mgu (apply s a) (apply s b);
instantiate' t n tab = case t of
{ TC s -> ((t, n), tab)
; TV s -> case lookup s tab of
{ Nothing -> let { va = TV (showInt n "") } in ((va, n + 1), (s, va):tab)
; Just v -> ((v, n), tab)
}
; TAp x y ->
fpair (instantiate' x n tab) \(t1, n1) tab1 ->
fpair (instantiate' y n1 tab1) \(t2, n2) tab2 ->
((TAp t1 t2, n2), tab2)
};
instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab);
instantiate (Qual ps t) n =
fpair (foldr instantiatePred (([], n), []) ps) \(ps1, n1) tab ->
first (Qual ps1) (fst (instantiate' t n1 tab));
proofApply sub a = case a of
{ Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
; A x y -> A (proofApply sub x) (proofApply sub y)
; L s t -> L s $ proofApply sub t
; _ -> a
};
typeAstSub sub (t, a) = (apply sub t, proofApply sub a);
infer typed loc ast csn = fpair csn \cs n ->
let
{ va = TV (showInt n "")
; insta ty = fpair (instantiate ty n) \(Qual preds ty) n1 -> ((ty, foldl A ast (map Proof preds)), (cs, n1))
}