forked from AICoE/prometheus-anomaly-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
263 lines (214 loc) · 8.82 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""docstring for installed packages."""
import logging
import numpy as np
from prometheus_api_client import PrometheusConnect, MetricsList, Metric
from test_configuration import Configuration
import mlflow
# import model_fourier as model
import model
# Set up logging
_LOGGER = logging.getLogger(__name__)
MLFLOW_CLIENT = mlflow.tracking.MlflowClient(
tracking_uri=Configuration.mlflow_tracking_uri
)
METRICS_LIST = Configuration.metrics_list
# Prometheus Connection details
pc = PrometheusConnect(
url=Configuration.prometheus_url,
headers=Configuration.prom_connect_headers,
disable_ssl=True,
)
def calculate_rmse(predicted, true):
"""Calculate the Root Mean Squared Error (RMSE) between the predicted and true values."""
return (((predicted - true) ** 2).mean()) ** 0.5
def calculate_accuracy(predicted, true):
"""Calculate the accuracy of the predictions."""
return (1 - sum(abs(predicted - true)) / len(true)) * 100
def label_true_anomalies(true_value_df, threshold_value):
"""Label the true anomalies."""
# label true anomalies based on a simple linear threshold,
# can be replaced with a more complex calculation based on metric data
return np.where(true_value_df["y"] > threshold_value, 1, 0)
def label_predicted_anomalies(true_value_df, predicted_value_df):
"""Label the predicted anomalies."""
return np.where(
(
((true_value_df["y"] >= predicted_value_df["yhat_upper"]))
| (true_value_df["y"] <= predicted_value_df["yhat_lower"])
),
1,
0,
)
def compute_true_positive_rate(forecasted_anomalies, labeled_anomalies):
"""Calculate the true positive rate."""
num_true_positive = sum(
(forecasted_anomalies.values == 1) & (labeled_anomalies.values == 1)
)
true_postive_rate = num_true_positive / sum(labeled_anomalies.values)
return true_postive_rate
# Run for every metric defined in the METRICS_LIST
for metric in METRICS_LIST:
# Download the the train data from Prometheus
train_data = MetricsList(
pc.get_metric_range_data(
metric_name=metric,
start_time=Configuration.metric_start_time,
end_time=Configuration.metric_train_data_end_time,
chunk_size=Configuration.metric_chunk_size,
)
)
# If the training data list downloaded is empty
if not train_data:
_LOGGER.error("No Metric data received, please check the data window size")
raise ValueError
# If more than one time-series match the given metric, raise an error
if len(train_data) > 1:
_LOGGER.error("Multiple timeseries matching %s were found")
_LOGGER.error("The timeseries matched were: ")
for timeseries in train_data:
print(timeseries.metric_name, timeseries.label_config)
_LOGGER.error("One metric should be specific to a single time-series")
raise ValueError
# Download test data
test_data_list = pc.get_metric_range_data(
metric_name=train_data[0].metric_name,
label_config=train_data[0].label_config,
start_time=Configuration.metric_train_data_end_time,
end_time=Configuration.metric_end_time,
chunk_size=Configuration.metric_chunk_size,
)
_LOGGER.info("Downloaded metric data")
model_mp = model.MetricPredictor(
train_data[0],
rolling_data_window_size=Configuration.rolling_training_window_size,
)
mlflow.set_experiment(train_data[0].metric_name)
mlflow.start_run()
mlflow_run_id = mlflow.active_run().info.run_id
# keep track of the model name as a mlflow run tag
mlflow.set_tag("model", model_mp.model_name)
# keep track of labels as tags in the mlflow experiment
for label in train_data[0].label_config:
mlflow.set_tag(label, train_data[0].label_config[label])
# store the metric with labels as a tag so it can be copied into grafana to view the real metric
mlflow.set_tag("metric", metric)
# log parameters before run
mlflow.log_param(
"retraining_interval_minutes", str(Configuration.retraining_interval_minutes)
)
mlflow.log_param(
"rolling_training_window_size", str(Configuration.rolling_training_window_size)
)
mlflow.log_param(
"true_anomaly_threshold", str(Configuration.true_anomaly_threshold)
)
# initial run with just the train data
model_mp.train(prediction_duration=Configuration.retraining_interval_minutes)
# store the predicted dataframe and the true dataframe
predicted_df = model_mp.predicted_df
true_df = Metric(test_data_list[0]).metric_values.set_index("ds")
# Label True Anomalies
true_df["anomaly"] = label_true_anomalies(
true_df, Configuration.true_anomaly_threshold
)
# track true_positives & ground truth anomalies
num_true_positives = 0
num_ground_truth_anomalies = 0
for item in range(len(test_data_list) - 1):
# the true values for this training period
true_values = Metric(test_data_list[item + 1])
true_values.metric_values = true_values.metric_values.set_index("ds")
true_df += true_values.metric_values
# for each item in the test_data list, update the model (append new data and train it)
model_mp.train(test_data_list[item], len(true_values.metric_values))
# get the timestamp for the median value in the df
metric_timestamp = true_values.metric_values.index.values[
int(len(true_values.metric_values) / 2)
]
metric_timestamp = int(metric_timestamp.astype("uint64") / 1e6)
# calculate predicted anomaly
model_mp.predicted_df["anomaly"] = label_predicted_anomalies(
true_values.metric_values, model_mp.predicted_df
)
# store the prediction df for every interval
predicted_df = predicted_df + model_mp.predicted_df
# Label True Anomalies
true_values.metric_values["anomaly"] = label_true_anomalies(
true_values.metric_values, Configuration.true_anomaly_threshold
)
true_df += true_values.metric_values
# Total number of predicted and ground truth anomalies
sum_predicted_anomalies = sum(model_mp.predicted_df["anomaly"])
sum_ground_truth_anomalies = sum(true_values.metric_values["anomaly"])
num_true_positives += sum(
(model_mp.predicted_df["anomaly"] == 1)
& (true_values.metric_values["anomaly"] == 1)
)
num_ground_truth_anomalies += sum_ground_truth_anomalies
# Calculate accuracy
accuracy = calculate_accuracy(
model_mp.predicted_df["anomaly"].values,
true_values.metric_values["anomaly"].values,
)
# Calculate RMSE
rmse = calculate_rmse(model_mp.predicted_df.yhat, true_values.metric_values.y)
# Calculate True positive rate for anomalies
true_positive_rate = compute_true_positive_rate(
model_mp.predicted_df["anomaly"], true_values.metric_values["anomaly"]
)
# log some accuracy metrics here
MLFLOW_CLIENT.log_metric(mlflow_run_id, "RMSE", rmse, metric_timestamp, item)
MLFLOW_CLIENT.log_metric(
mlflow_run_id, "Accuracy", accuracy, metric_timestamp, item
)
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"Ground truth anomalies",
sum_ground_truth_anomalies,
metric_timestamp,
item,
)
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"Forecasted anomalies",
sum_predicted_anomalies,
metric_timestamp,
item,
)
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"Number of test data points",
len(true_values.metric_values),
metric_timestamp,
item,
)
# Only log non Nan values for the true_anomaly_postive_rate
if true_positive_rate:
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"true_anomaly_postive_rate",
true_positive_rate,
metric_timestamp,
item,
)
# collect and log metrics for the entire test run
total_true_positive_rate = np.nan
if num_ground_truth_anomalies:
# check if num_ground_truth_anomalies is not 0 to avoid division by zero errors
total_true_positive_rate = num_true_positives / num_ground_truth_anomalies
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"Total true positive rate",
total_true_positive_rate,
metric_timestamp,
)
MLFLOW_CLIENT.log_metric(
mlflow_run_id, "Total true positive count", num_true_positives, metric_timestamp
)
MLFLOW_CLIENT.log_metric(
mlflow_run_id,
"Total ground truth count",
num_ground_truth_anomalies,
metric_timestamp,
)
mlflow.end_run()