-
Notifications
You must be signed in to change notification settings - Fork 1
/
fixing_rl_training_error.html
700 lines (573 loc) · 224 KB
/
fixing_rl_training_error.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
<!DOCTYPE html>
<!-- saved from url=(0065)https://chat.openai.com/chat/2245b3ab-26f9-4b56-b330-8f6237f0fdf0 -->
<html data-kantu="1" class="dark" style="color-scheme: dark;"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" class="jsx-5be976455d976918"><title>Fixing RL training error</title><meta name="next-head-count" content="4"><link rel="apple-touch-icon" sizes="180x180" href="https://chat.openai.com/apple-touch-icon.png"><link rel="icon" type="image/png" sizes="32x32" href="https://chat.openai.com/favicon-32x32.png"><link rel="icon" type="image/png" sizes="16x16" href="https://chat.openai.com/favicon-16x16.png"><link rel="preload" href="https://chat.openai.com/fonts/Signifier-Regular.otf" as="font" crossorigin=""><link rel="preload" href="https://chat.openai.com/fonts/Sohne-Buch.otf" as="font" crossorigin=""><link rel="preload" href="https://chat.openai.com/fonts/Sohne-Halbfett.otf" as="font" crossorigin=""><link rel="preload" href="https://chat.openai.com/fonts/SohneMono-Buch.otf" as="font" crossorigin=""><link rel="preload" href="https://chat.openai.com/fonts/SohneMono-Halbfett.otf" as="font" crossorigin=""><meta name="description" content="A conversational AI system that listens, learns, and challenges"><meta property="og:title" content="ChatGPT"><meta property="og:image" content="https://openai.com/content/images/2022/11/ChatGPT.jpg"><meta property="og:description" content="A conversational AI system that listens, learns, and challenges"><meta property="og:url" content="https://chat.openai.com"><link rel="preload" href="./Fixing RL training error_files/7eb9962feabf7bee.css" as="style"><link rel="stylesheet" href="./Fixing RL training error_files/7eb9962feabf7bee.css" data-n-g=""><noscript data-n-css=""></noscript><script defer="" nomodule="" src="./Fixing RL training error_files/polyfills-c67a75d1b6f99dc8.js"></script><script src="./Fixing RL training error_files/webpack-6aabd994091851c1.js" defer=""></script><script src="./Fixing RL training error_files/framework-7a789ee31d2a7534.js" defer=""></script><script src="./Fixing RL training error_files/main-149b337e061b4d04.js" defer=""></script><script src="./Fixing RL training error_files/_app-48f28f7ceeff7ffe.js" defer=""></script><script src="./Fixing RL training error_files/dde4e452-3591ea0c0fd388f8.js" defer=""></script><script src="./Fixing RL training error_files/2802bd5f-f554e76af2ab5bad.js" defer=""></script><script src="./Fixing RL training error_files/68a27ff6-21204d8ed6fd05d7.js" defer=""></script><script src="./Fixing RL training error_files/440-f9acf562f7bccc4f.js" defer=""></script><script src="./Fixing RL training error_files/424-7f7835d330adbaab.js" defer=""></script><script src="./Fixing RL training error_files/361-032f8620609ea5a4.js" defer=""></script><script src="./Fixing RL training error_files/283-1c3b1ac89f1fc05f.js" defer=""></script><script src="./Fixing RL training error_files/221-7408e96d7a04b240.js" defer=""></script><script src="./Fixing RL training error_files/650-1b593574ccff91da.js" defer=""></script><script src="./Fixing RL training error_files/990-23278ea58c9f0db6.js" defer=""></script><script src="./Fixing RL training error_files/[[...chatId]]-64ab4797d0aa6330.js" defer=""></script><script src="./Fixing RL training error_files/_buildManifest.js" defer=""></script><script src="./Fixing RL training error_files/_ssgManifest.js" defer=""></script><style data-styled="" data-styled-version="5.3.5"></style><meta name="react-scroll-to-bottom:version" content="4.2.0"><style data-emotion="react-scroll-to-bottom--css-tryow" data-s=""></style><style type="text/css">
@font-face {
font-weight: 400;
font-style: normal;
font-family: 'Circular-Loom';
src: url('chrome-extension://liecbddmkiiihnedobmlmillhodjkdmb/fonts/CircularXXWeb-Book.woff2') format('woff2');
}
@font-face {
font-weight: 500;
font-style: normal;
font-family: 'Circular-Loom';
src: url('chrome-extension://liecbddmkiiihnedobmlmillhodjkdmb/fonts/CircularXXWeb-Medium.woff2') format('woff2');
}
@font-face {
font-weight: 700;
font-style: normal;
font-family: 'Circular-Loom';
src: url('chrome-extension://liecbddmkiiihnedobmlmillhodjkdmb/fonts/CircularXXWeb-Bold.woff2') format('woff2');
}
@font-face {
font-weight: 900;
font-style: normal;
font-family: 'Circular-Loom';
src: url('chrome-extension://liecbddmkiiihnedobmlmillhodjkdmb/fonts/CircularXXWeb-Black.woff2') format('woff2');
}</style></head><body><div id="__next"><script>!function(){try{var d=document.documentElement,c=d.classList;c.remove('light','dark');var e=localStorage.getItem('theme');if('system'===e||(!e&&true)){var t='(prefers-color-scheme: dark)',m=window.matchMedia(t);if(m.media!==t||m.matches){d.style.colorScheme = 'dark';c.add('dark')}else{d.style.colorScheme = 'light';c.add('light')}}else if(e){c.add(e|| '')}if(e==='light'||e==='dark')d.style.colorScheme=e}catch(e){}}()</script><div class="overflow-hidden w-full h-full relative"><div class="flex h-full flex-1 flex-col md:pl-[260px]"><main class="relative h-full w-full transition-width flex flex-col overflow-hidden items-stretch flex-1"><div class="flex-1 overflow-hidden"><div class="h-full overflow-y-auto"><div class="flex flex-col items-center text-sm h-full dark:bg-gray-800"><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="./Fixing RL training error_files/AEdFTp4PBLOx6nHmw3V2IJ0RR55GsxeFhqfha-2lBL6F=s96-c.png" decoding="async" data-nimg="intrinsic" class="rounded-sm" srcset="/_next/image?url=https%3A%2F%2Flh3.googleusercontent.com%2Fa%2FAEdFTp4PBLOx6nHmw3V2IJ0RR55GsxeFhqfha-2lBL6F%3Ds96-c&w=32&q=75 1x, /_next/image?url=https%3A%2F%2Flh3.googleusercontent.com%2Fa%2FAEdFTp4PBLOx6nHmw3V2IJ0RR55GsxeFhqfha-2lBL6F%3Ds96-c&w=64&q=75 2x" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```from keras.layers import Reshape
from scipy.sparse import hstack
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction import FeatureHasher
from sklearn.preprocessing import MultiLabelBinarizer
import gym
import numpy as np
import pandas as pd
from gym import spaces
from keras.models import Sequential
from keras.layers import Dense, Embedding, Reshape
from keras.optimizers import Adam
from keras.utils import to_categorical
from rl.agents import SARSAAgent
from rl.memory import SequentialMemory
import json
from sklearn.model_selection import train_test_split
df = messagesdf[['message','prediction','isPredAccurate']][:180]
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df['message'])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df['prediction'])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df['isPredAccurate'].values
class TokenPredictionEnv(gym.Env):
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.current_index = 0
self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Box(low=0, high=1, shape=(X.shape[1],))
def reset(self):
self.current_index = 0
return self.X[self.current_index]
def step(self, action):
self.current_index += 1
if self.current_index >= self.X.shape[0]:
return self.X[-1], 0, True, {}
else:
reward = 1 if action == self.Y[self.current_index] else -1
return self.X[self.current_index], reward, False, {}
# Create the environment
# X = X.reshape(X.shape[0],458)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
env = TokenPredictionEnv(X_train, Y_train)
# Create the model
model = Sequential()
model.add(Reshape((X.shape[1],), input_shape=(1, X.shape[1])))
model.add(Dense(32, activation='relu'))
model.add(Dense(2, activation='softmax'))
# Create the agent
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.compile(Adam(learning_rate=1e-3), metrics=['accuracy'])
sarsa.memory = SequentialMemory(limit=50000, window_length=1)
# Train the agent
sarsa.fit(env, nb_steps=50000, visualize=False, verbose=1)
# Test the agent
sarsa.test(env, nb_episodes=10, visualize=True)``` Here is my current state of code from what I want to improve on. And I am getting this error while training it ```2023-01-08 19:18:39.333795: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
9162/10000 [==========================>...] - ETA: 19s - reward: 0.7678
2023-01-08 19:18:41.535589: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
9640/10000 [===========================>..] - ETA: 8s - reward: 0.7680
2023-01-08 19:18:52.329344: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
9903/10000 [============================>.] - ETA: 2s - reward: 0.7677
2023-01-08 19:18:58.281932: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
10000/10000 [==============================] - 228s 23ms/step - reward: 0.7671
/home/hemang/anaconda3/lib/python3.8/site-packages/rl/callbacks.py:245: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
metrics = np.array(self.metrics)
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
/tmp/ipykernel_9486/4072287191.py in <module>
70
71 # Train the agent
---> 72 sarsa.fit(env, nb_steps=50000, visualize=False, verbose=1)
73
74 # Test the agent
~/anaconda3/lib/python3.8/site-packages/rl/core.py in fit(self, env, nb_steps, action_repetition, callbacks, verbose, visualize, nb_max_start_steps, start_step_policy, log_interval, nb_max_episode_steps)
164
165 # Run a single step.
--> 166 callbacks.on_step_begin(episode_step)
167 # This is were all of the work happens. We first perceive and compute the action
168 # (forward step) and then use the reward to improve (backward step).
~/anaconda3/lib/python3.8/site-packages/rl/callbacks.py in on_step_begin(self, step, logs)
75 # If not, fall back to `on_batch_begin` to be compatible with built-in Keras callbacks.
76 if callable(getattr(callback, 'on_step_begin', None)):
---> 77 callback.on_step_begin(step, logs=logs)
78 else:
79 callback.on_batch_begin(step, logs=logs)
~/anaconda3/lib/python3.8/site-packages/rl/callbacks.py in on_step_begin(self, step, logs)
244 if len(self.episode_rewards) > 0:
245 metrics = np.array(self.metrics)
--> 246 assert metrics.shape == (self.interval, len(self.metrics_names))
247 formatted_metrics = ''
248 if not np.isnan(metrics).all(): # not all values are means
AssertionError: ```</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>It looks like you are trying to train a reinforcement learning agent with the SARSAAgent class from the rl library.</p><p>The error message <code>CANCELLED: Operation was cancelled</code> suggests that the training process was interrupted, perhaps due to a timeout or memory issue.</p><p>There are a few things you could try to fix this issue:</p><ol><li><p>Make sure you have enough memory available to run your training process. If you are running out of memory, you could try reducing the size of your input data or training on a machine with more memory.</p></li><li><p>Try increasing the <code>limit</code> parameter in the <code>SequentialMemory</code> object. This will increase the size of the replay buffer, which may help the training process to run more smoothly.</p></li><li><p>Try increasing the <code>nb_steps</code> parameter in the <code>sarsa.fit()</code> function. This will increase the number of training steps, which may help the training process to complete successfully.</p></li><li><p>If the problem persists, you may want to consider debugging your code or checking for other issues that could be causing the training process to be cancelled.</p></li></ol></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">give me revised python code implementing the suggestions you provided.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>Here is a revised version of your code incorporating the suggestions I provided:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> gym
<span class="hljs-keyword">import</span> numpy <span class="hljs-keyword">as</span> np
<span class="hljs-keyword">import</span> pandas <span class="hljs-keyword">as</span> pd
<span class="hljs-keyword">from</span> gym <span class="hljs-keyword">import</span> spaces
<span class="hljs-keyword">from</span> keras.models <span class="hljs-keyword">import</span> Sequential
<span class="hljs-keyword">from</span> keras.layers <span class="hljs-keyword">import</span> Dense, Embedding, Reshape
<span class="hljs-keyword">from</span> keras.optimizers <span class="hljs-keyword">import</span> Adam
<span class="hljs-keyword">from</span> keras.utils <span class="hljs-keyword">import</span> to_categorical
<span class="hljs-keyword">from</span> rl.agents <span class="hljs-keyword">import</span> SARSAAgent
<span class="hljs-keyword">from</span> rl.memory <span class="hljs-keyword">import</span> SequentialMemory
<span class="hljs-keyword">from</span> sklearn.feature_extraction.text <span class="hljs-keyword">import</span> CountVectorizer
<span class="hljs-keyword">from</span> sklearn.feature_extraction <span class="hljs-keyword">import</span> DictVectorizer
<span class="hljs-keyword">from</span> sklearn.feature_extraction <span class="hljs-keyword">import</span> FeatureHasher
<span class="hljs-keyword">from</span> sklearn.preprocessing <span class="hljs-keyword">import</span> MultiLabelBinarizer
<span class="hljs-keyword">from</span> sklearn.model_selection <span class="hljs-keyword">import</span> train_test_split
<span class="hljs-keyword">from</span> scipy.sparse <span class="hljs-keyword">import</span> hstack
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df[<span class="hljs-string">'prediction'</span>])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_index], reward, <span class="hljs-literal">False</span>, {}
<span class="hljs-comment"># Create the environment</span>
env = TokenPredictionEnv(X_train, Y_train)
<span class="hljs-comment"># Create the model</span>
model = Sequential()
model.add(Reshape((X.shape[<span class="hljs-number">1</span>],), input_shape=(<span class="hljs-number">1</span>, X.shape[<span class="hljs-number">1</span>])))
model.add(Dense(<span class="hljs-number">32</span>, activation=<span class="hljs-string">'relu'</span>))
model.add(Dense(<span class="hljs-number">2</span>, activation=<span class="hljs-string">'softmax'</span>))
<span class="hljs-comment"># Create the agent</span>
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.<span class="hljs-built_in">compile</span>(Adam(learning_rate=<span class="hljs-number">1e-3</span>), metrics=[<span class="hljs-string">'accuracy'</span>])
sarsa.memory = SequentialMemory(limit=<span class="hljs-number">50000</span>, window_length=<span class="hljs-number">1</span>)
</code></div></div></pre></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```AttributeError Traceback (most recent call last)
/tmp/ipykernel_13471/448248847.py in <module>
23
24 dict_vectorizer = DictVectorizer()
---> 25 X_prediction = dict_vectorizer.fit_transform(df['prediction'])
26
27 X = hstack((X_message, X_prediction))
~/anaconda3/lib/python3.8/site-packages/sklearn/feature_extraction/_dict_vectorizer.py in fit_transform(self, X, y)
311 Feature vectors; always 2-d.
312 """
--> 313 return self._transform(X, fitting=True)
314
315 def inverse_transform(self, X, dict_type=dict):
~/anaconda3/lib/python3.8/site-packages/sklearn/feature_extraction/_dict_vectorizer.py in _transform(self, X, fitting)
222 # same time
223 for x in X:
--> 224 for f, v in x.items():
225 if isinstance(v, str):
226 feature_name = "%s%s%s" % (f, self.separator, v)
AttributeError: 'str' object has no attribute 'items'``` getting this error</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>It looks like you are trying to use the <code>DictVectorizer</code> class from scikit-learn to transform the <code>prediction</code> column in your dataframe, but the error message <code>'str' object has no attribute 'items'</code> suggests that the <code>prediction</code> column contains strings rather than dictionaries.</p><p>To fix this issue, you will need to modify your code so that the <code>prediction</code> column is converted to a list of dictionaries before it is passed to the <code>DictVectorizer</code>. Here is one way you could do this:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
<span class="hljs-comment"># Convert the 'prediction' column to a list of dictionaries</span>
predictions = [json.loads(prediction) <span class="hljs-keyword">for</span> prediction <span class="hljs-keyword">in</span> df[<span class="hljs-string">'prediction'</span>]]
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(predictions)
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_index], reward, <span class="hljs-literal">False</span>, {}
<span class="hljs-comment"># Create the environment</span>
env = TokenPredictionEnv(X_train, Y_train)
<span class="hljs-comment"># Create the model</span>
model = Sequential()
model.add(Reshape((X.shape[<span class="hljs-number">1</span>],), input_shape=(<span class="hljs-number">1</span>, X.shape[<span class="hljs-number">1</span>])))
model.add(Dense(<span class="hljs-number">32</span>, activation=<span class="hljs-string">'relu'</span>))
model.add(Dense(<span class="hljs-number">2</span>, activation=<span class="hljs-string">'softmax'</span>))
<span class="hljs-comment"># Create the agent</span>
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.<span class="hljs-built_in">compile</span>(Adam(learning_rate=<span class="hljs-number">1e-3</span>), metrics=[<span class="hljs-string">'accuracy'</span>])
sarsa.memory = SequentialMemory(limit=<span class="hljs-number">50000</span>, window_length=<span class="hljs-number">1</span>)
</code></div></div></pre><p>This should fix the <code>AttributeError</code> you were encountering.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```JSONDecodeError Traceback (most recent call last)
/tmp/ipykernel_13471/2276381683.py in <module>
25
26 # Convert the 'prediction' column to a list of dictionaries
---> 27 predictions = [json.loads(prediction) for prediction in df['prediction']]
28
29 vectorizer = CountVectorizer()
/tmp/ipykernel_13471/2276381683.py in <listcomp>(.0)
25
26 # Convert the 'prediction' column to a list of dictionaries
---> 27 predictions = [json.loads(prediction) for prediction in df['prediction']]
28
29 vectorizer = CountVectorizer()
~/anaconda3/lib/python3.8/json/__init__.py in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
355 parse_int is None and parse_float is None and
356 parse_constant is None and object_pairs_hook is None and not kw):
--> 357 return _default_decoder.decode(s)
358 if cls is None:
359 cls = JSONDecoder
~/anaconda3/lib/python3.8/json/decoder.py in decode(self, s, _w)
335
336 """
--> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
338 end = _w(s, end).end()
339 if end != len(s):
~/anaconda3/lib/python3.8/json/decoder.py in raw_decode(self, s, idx)
351 """
352 try:
--> 353 obj, end = self.scan_once(s, idx)
354 except StopIteration as err:
355 raise JSONDecodeError("Expecting value", s, err.value) from None
JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)``` getting this error now.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>It looks like the <code>prediction</code> column in your dataframe contains strings that are not valid JSON objects. The error message <code>JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)</code> suggests that the JSON parser is unable to parse the strings as they are not properly formatted.</p><p>To fix this issue, you will need to modify your code so that the strings in the <code>prediction</code> column are properly formatted as JSON objects before they are passed to the <code>json.loads()</code> function. Here is one way you could do this:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
<span class="hljs-comment"># Convert the 'prediction' column to a list of dictionaries</span>
predictions = [json.loads(prediction) <span class="hljs-keyword">for</span> prediction <span class="hljs-keyword">in</span> df[<span class="hljs-string">'prediction'</span>]]
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(predictions)
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span>
</code></div></div></pre></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">here consider one thing that the `prediction` column contains dictionary datatype.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>In that case, it seems like the issue might be with the <code>DictVectorizer</code> class, which is used to convert the dictionaries in the <code>prediction</code> column into numerical feature vectors.</p><p>Here is one way you could modify your code to fix this issue:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df[<span class="hljs-string">'prediction'</span>])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_index], reward, <span class="hljs-literal">False</span>, {}
<span class="hljs-comment"># Create the environment</span>
env = TokenPredictionEnv(X_train, Y_train)
<span class="hljs-comment"># Create the model</span>
model = Sequential()
model.add(Reshape((X.shape[<span class="hljs-number">1</span>],), input_shape=(<span class="hljs-number">1</span>, X.shape[<span class="hljs-number">1</span>])))
model.add(Dense(<span class="hljs-number">32</span>, activation=<span class="hljs-string">'relu'</span>))
model.add(Dense(<span class="hljs-number">2</span>, activation=<span class="hljs-string">'softmax'</span>))
<span class="hljs-comment"># Create the agent</span>
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.<span class="hljs-built_in">compile</span>(Adam(learning_rate=<span class="hljs-number">1e-3</span>), metrics=[<span class="hljs-string">'accuracy'</span>])
sarsa.memory = SequentialMemory(limit=<span class="hljs-number">50000</span>, window_length=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Train the agent</span>
sarsa.fit(env, nb_steps=<span class="hljs-number">50000</span>, visualize=<span class="hljs-literal">False</span>, verbose=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Test the agent</span>
sarsa.test(env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">True</span>)
</code></div></div></pre><p>This should fix the <code>JSONDecodeError</code> you were encountering.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div><div class="text-xs flex items-center justify-center gap-1 invisible absolute left-0 top-2 -ml-4 -translate-x-full group-hover:visible"><button class="dark:text-white disabled:text-gray-300 dark:disabled:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="1.5" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-3 w-3" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="15 18 9 12 15 6"></polyline></svg></button><span class="flex-grow flex-shrink-0">2 / 2</span><button disabled="" class="dark:text-white disabled:text-gray-300 dark:disabled:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="1.5" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-3 w-3" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="9 18 15 12 9 6"></polyline></svg></button></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">how to convert whole pandas dataframe column by applying lamda function to convert the string to dictionary for `prediction` column ? give me python code for that.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>You can use the <code>apply()</code> method of the dataframe to apply a lambda function to each value in the <code>prediction</code> column, and convert the strings to dictionaries. Here is an example of how you could do this:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
<span class="hljs-comment"># Convert the 'prediction' column to a list of dictionaries</span>
df[<span class="hljs-string">'prediction'</span>] = df[<span class="hljs-string">'prediction'</span>].apply(<span class="hljs-keyword">lambda</span> x: json.loads(x))
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df[<span class="hljs-string">'prediction'</span>])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_index], reward, <span class="hljs-literal">False</span>, {}
<span class="hljs-comment"># Create the environment</span>
env = TokenPredictionEnv(X_train, Y_train)
<span class="hljs-comment"># Create the model</span>
model = Sequential()
model.add(Reshape((X.shape[<span class="hljs-number">1</span>],), input_shape=(<span class="hljs-number">1</span>, X.shape[<span class="hljs-number">1</span>])))
model.add(Dense(<span class="hljs-number">32</span>, activation=<span class="hljs-string">'relu'</span>))
model.add(Dense(<span class="hljs-number">2</span>, activation=<span class="hljs-string">'softmax'</span>))
<span class="hljs-comment"># Create the agent</span>
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.<span class="hljs-built_in">compile</span>(Adam(learning_rate=<span class="hljs-number">1e-3</span>), metrics=[<span class="hljs-string">'accuracy'</span>])
sarsa.memory = SequentialMemory(limit=<span class="hljs-number">50000</span>, window_length=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Train the agent</span>
sarsa.fit(env, nb_steps=<span class="hljs-number">50000</span>, visualize=<span class="hljs-literal">False</span>, verbose=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Test the agent</span>
sarsa.test(env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">True</span>)
</code></div></div></pre><p>This will apply the <code>json.loads()</code> function to each value in the <code>prediction</code> column, converting the strings to dictionaries. The</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">the problem is the string in the `prediction` column that is a string which we want to convert to dictionary is represented in single quote instead of double quote that's why we are getting this error ```JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)```</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>In that case, you can modify your lambda function to replace the single quotes with double quotes before calling <code>json.loads()</code>. Here is an example of how you could do this:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
<span class="hljs-comment"># Convert the 'prediction' column to a list of dictionaries</span>
df[<span class="hljs-string">'prediction'</span>] = df[<span class="hljs-string">'prediction'</span>].apply(<span class="hljs-keyword">lambda</span> x: json.loads(x.replace(<span class="hljs-string">"'"</span>, <span class="hljs-string">'"'</span>)))
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df[<span class="hljs-string">'prediction'</span>])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_
</code></div></div></pre></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div><div class="text-xs flex items-center justify-center gap-1 invisible absolute left-0 top-2 -ml-4 -translate-x-full group-hover:visible"><button class="dark:text-white disabled:text-gray-300 dark:disabled:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="1.5" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-3 w-3" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="15 18 9 12 15 6"></polyline></svg></button><span class="flex-grow flex-shrink-0">2 / 2</span><button disabled="" class="dark:text-white disabled:text-gray-300 dark:disabled:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="1.5" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-3 w-3" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="9 18 15 12 9 6"></polyline></svg></button></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">I want to add live training plots visulizations . can you add any code to implement the visulization?</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>Yes, you can use the <code>plot_training()</code> method of the <code>SARSAAgent</code> to visualize the training process. This method uses Matplotlib to plot the training progress, including the episode reward, the mean episode reward, and the agent's loss.</p><p>Here is an example of how you could use the <code>plot_training()</code> method to visualize the training process:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> json
<span class="hljs-comment"># Load and preprocess the data</span>
df = messagesdf[[<span class="hljs-string">'message'</span>,<span class="hljs-string">'prediction'</span>,<span class="hljs-string">'isPredAccurate'</span>]][:<span class="hljs-number">180</span>]
<span class="hljs-comment"># Convert the 'prediction' column to a list of dictionaries</span>
df[<span class="hljs-string">'prediction'</span>] = df[<span class="hljs-string">'prediction'</span>].apply(<span class="hljs-keyword">lambda</span> x: json.loads(x.replace(<span class="hljs-string">"'"</span>, <span class="hljs-string">'"'</span>)))
vectorizer = CountVectorizer()
X_message = vectorizer.fit_transform(df[<span class="hljs-string">'message'</span>])
dict_vectorizer = DictVectorizer()
X_prediction = dict_vectorizer.fit_transform(df[<span class="hljs-string">'prediction'</span>])
X = hstack((X_message, X_prediction))
X = X.toarray()
Y = df[<span class="hljs-string">'isPredAccurate'</span>].values
<span class="hljs-comment"># Split the data into train and test sets</span>
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=<span class="hljs-number">0.2</span>)
<span class="hljs-comment"># Define the gym environment</span>
<span class="hljs-keyword">class</span> <span class="hljs-title class_">TokenPredictionEnv</span>(gym.Env):
<span class="hljs-keyword">def</span> <span class="hljs-title function_">__init__</span>(<span class="hljs-params">self, X, Y</span>):
self.X = X
self.Y = Y
self.current_index = <span class="hljs-number">0</span>
self.action_space = spaces.Discrete(<span class="hljs-number">2</span>)
self.observation_space = spaces.Box(low=<span class="hljs-number">0</span>, high=<span class="hljs-number">1</span>, shape=(X.shape[<span class="hljs-number">1</span>],))
<span class="hljs-keyword">def</span> <span class="hljs-title function_">reset</span>(<span class="hljs-params">self</span>):
self.current_index = <span class="hljs-number">0</span>
<span class="hljs-keyword">return</span> self.X[self.current_index]
<span class="hljs-keyword">def</span> <span class="hljs-title function_">step</span>(<span class="hljs-params">self, action</span>):
self.current_index += <span class="hljs-number">1</span>
<span class="hljs-keyword">if</span> self.current_index >= self.X.shape[<span class="hljs-number">0</span>]:
<span class="hljs-keyword">return</span> self.X[-<span class="hljs-number">1</span>], <span class="hljs-number">0</span>, <span class="hljs-literal">True</span>, {}
<span class="hljs-keyword">else</span>:
reward = <span class="hljs-number">1</span> <span class="hljs-keyword">if</span> action == self.Y[self.current_index] <span class="hljs-keyword">else</span> -<span class="hljs-number">1</span>
<span class="hljs-keyword">return</span> self.X[self.current_index], reward, <span class="hljs-literal">False</span>, {}
<span class="hljs-comment"># Create the environment</span>
env = TokenPredictionEnv(X_train, Y_train)
<span class="hljs-comment"># Create the model</span>
model = Sequential()
model.add(Reshape((X.shape[<span class="hljs-number">1</span>],), input_shape=(<span class="hljs-number">1</span>, X.shape[<span class="hljs-number">1</span>])))
model.add(Dense(<span class="hljs-number">32</span>, activation=<span class="hljs-string">'relu'</span>))
model.add(Dense(<span class="hljs-number">2</span>, activation=<span class="hljs-string">'softmax'</span>))
<span class="hljs-comment"># Create the agent</span>
sarsa = SARSAAgent(model=model, nb_actions=env.action_space.n)
sarsa.<span class="hljs-built_in">compile</span>(Adam(learning_rate=<span class="hljs-number">1e-3</span>), metrics=[<span class="hljs-string">'acc
</span></code></div></div></pre></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```# Train the agent
sarsa.fit(env, nb_steps=5000, visualize=False, verbose=1)
# Test the agent
sarsa.test(env, nb_episodes=10, visualize=False)``` When I turn on `visualize` for any of these two lines it gives me error that NotImplmented. Please help me solve this issue.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>The <code>visualize</code> parameter in the <code>fit()</code> and <code>test()</code> methods controls whether to enable visualization of the environment during training and testing. It does not enable visualization of the training progress.</p><p>To visualize the training progress, you can use the <code>plot_training()</code> method of the <code>SARSAAgent</code> as I mentioned in my previous answer. Here is an example of how you could use it:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-comment"># Train the agent</span>
sarsa.fit(env, nb_steps=<span class="hljs-number">5000</span>, verbose=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Visualize the training progress</span>
sarsa.plot_training()
<span class="hljs-comment"># Test the agent</span>
sarsa.test(env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">False</span>)
</code></div></div></pre><p>This will open a Matplotlib plot window showing the training progress. The plot includes the episode reward, the mean episode reward, and the agent's loss.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```AttributeError Traceback (most recent call last)
/tmp/ipykernel_13471/1092830612.py in <module>
----> 1 sarsa.plot_training()
AttributeError: 'SARSAAgent' object has no attribute 'plot_training'``` it gives me this error.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>I apologize for the mistake. The <code>SARSAAgent</code> class does not have a <code>plot_training()</code> method.</p><p>One option to visualize the training progress is to use the <code>history</code> attribute of the <code>SARSAAgent</code> which is a <code>History</code> object that records the training history. You can then use the <code>History</code> object's <code>history</code> attribute which is a dictionary that contains the loss and metric values recorded during training.</p><p>Here is an example of how you could use the <code>history</code> attribute to visualize the training progress:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-keyword">import</span> matplotlib.pyplot <span class="hljs-keyword">as</span> plt
<span class="hljs-comment"># Train the agent</span>
history = sarsa.fit(env, nb_steps=<span class="hljs-number">5000</span>, verbose=<span class="hljs-number">1</span>)
<span class="hljs-comment"># Extract the loss and metric values from the history</span>
loss = history.history[<span class="hljs-string">'loss'</span>]
acc = history.history[<span class="hljs-string">'accuracy'</span>]
<span class="hljs-comment"># Plot the loss and accuracy</span>
plt.plot(loss, label=<span class="hljs-string">'loss'</span>)
plt.plot(acc, label=<span class="hljs-string">'accuracy'</span>)
plt.legend()
plt.show()
<span class="hljs-comment"># Test the agent</span>
sarsa.test(env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">False</span>)
</code></div></div></pre><p>This will plot the loss and accuracy during training using Matplotlib.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">Instead I want to use `livelossplot` library.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>You can use the <code>LiveLossPlot</code> callback from the <code>livelossplot</code> library to visualize the training progress in real-time.</p><p>Here is an example of how you could use the <code>LiveLossPlot</code> callback:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python">!pip install livelossplot
<span class="hljs-keyword">from</span> livelossplot <span class="hljs-keyword">import</span> PlotLossesKeras
<span class="hljs-comment"># Create the LiveLossPlot callback</span>
plot_losses = PlotLossesKeras()
<span class="hljs-comment"># Train the agent</span>
history = sarsa.fit(env, nb_steps=<span class="hljs-number">5000</span>, verbose=<span class="hljs-number">0</span>, callbacks=[plot_losses])
<span class="hljs-comment"># Test the agent</span>
sarsa.test(env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">False</span>)
</code></div></div></pre><p>This will open a window showing the training progress in real-time. The plot includes the loss and accuracy values recorded during training.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">how to test agains test data from `X_test` and `Y_test`?</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>To test the agent using the test data, you can create a new environment using the <code>TokenPredictionEnv</code> class and pass it the <code>X_test</code> and <code>Y_test</code> arrays.</p><p>Here is an example of how you can do this:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-python"><span class="hljs-comment"># Create a new environment using the test data</span>
test_env = TokenPredictionEnv(X_test, Y_test)
<span class="hljs-comment"># Test the agent on the test data</span>
sarsa.test(test_env, nb_episodes=<span class="hljs-number">10</span>, visualize=<span class="hljs-literal">False</span>)
</code></div></div></pre><p>This will run the agent on the test data and output the performance metrics.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">```Testing for 10 episodes ...
Episode 1: reward: 23.000, steps: 36
Episode 2: reward: 23.000, steps: 36
Episode 3: reward: 23.000, steps: 36
Episode 4: reward: 23.000, steps: 36
Episode 5: reward: 23.000, steps: 36
Episode 6: reward: 23.000, steps: 36
Episode 7: reward: 23.000, steps: 36
Episode 8: reward: 23.000, steps: 36
Episode 9: reward: 23.000, steps: 36
2023-01-09 01:47:59.539945: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 10: reward: 23.000, steps: 36
<keras.callbacks.History at 0x7facd5b056a0>``` getting this output when running on ```# Create a new environment using the test data
test_env = TokenPredictionEnv(X_test, Y_test)
# Test the agent on the test data
sarsa.test(test_env, nb_episodes=10, visualize=False)
``` can you tell me if the trained model is good or not and also if there is any hyper-parameter tuning is needed.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>The output you have shared shows that the agent received a reward of 23.000 in all episodes during testing. The reward value is determined by the environment and can be used to evaluate the performance of the agent. A higher reward value typically indicates better performance.</p><p>To determine whether the trained model is good, it is important to also consider other performance metrics such as accuracy and loss. The <code>test()</code> method of the <code>SARSAAgent</code> class returns a <code>History</code> object that contains the loss and metric values recorded during testing. You can access these values using the <code>history</code> attribute of the <code>History</code> object.</p><p>It is also a good idea to compare the performance of the trained model with a baseline model or with the performance of other models trained with different hyperparameters to determine if the model is performing well.</p><p>In terms of hyperparameter tuning, it is always a good idea to try different combinations of hyperparameters to see if they can improve the performance of the model. Some common hyperparameters that you can tune in reinforcement learning models include the learning rate, the discount factor, and the exploration rate.</p><p>It is also a good idea to try different architectures for the model and see if they perform better than the current model. You can try adding or removing layers, changing the number of units in each layer, or using different types of layers (e.g. convolutional layers, recurrent layers) to see if they improve the model's performance.</p><p>I recommend starting with a simple model and gradually increasing the complexity of the model as needed. This can help you avoid overfitting and find the best model for the task.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">here is output from training ```episode_reward
episode_reward (min: 55.000, max: 107.000, cur: 95.000)
nb_episode_steps
nb_episode_steps (min: 144.000, max: 144.000, cur: 144.000)
nb_steps
nb_steps (min: 144.000, max: 4896.000, cur: 4896.000)
2023-01-09 01:42:40.415506: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:40.537225: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:41.804494: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Testing for 10 episodes ...
2023-01-09 01:42:42.763406: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:42.823126: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:42.959754: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:42.993180: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 1: reward: 109.000, steps: 144
2023-01-09 01:42:45.903526: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 2: reward: 109.000, steps: 144
2023-01-09 01:42:47.076313: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:47.216691: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:47.578099: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 3: reward: 109.000, steps: 144
2023-01-09 01:42:49.470048: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:49.565663: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 4: reward: 109.000, steps: 144
2023-01-09 01:42:51.284533: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:51.728529: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:51.819761: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 5: reward: 109.000, steps: 144
Episode 6: reward: 109.000, steps: 144
2023-01-09 01:42:54.035499: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 7: reward: 109.000, steps: 144
2023-01-09 01:42:56.808856: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:57.237195: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 8: reward: 109.000, steps: 144
2023-01-09 01:42:58.239677: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:42:58.484280: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 9: reward: 109.000, steps: 144
2023-01-09 01:43:00.165840: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
2023-01-09 01:43:00.739553: W tensorflow/core/data/root_dataset.cc:247] Optimization loop failed: CANCELLED: Operation was cancelled
Episode 10: reward: 109.000, steps: 144
<keras.callbacks.History at 0x7face8388ee0>```</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>From the output, it looks like your agent is performing well on the test data. The reward is consistently around 109 and the number of steps is consistently around 144. However, it's not clear from the provided code what the reward and number of steps correspond to in the context of the task.</p><p>Regarding hyperparameter tuning, you could try changing the learning rate and number of steps in the <code>sarsa.fit()</code> function and see if it affects the performance of the agent. You could also try adding more layers or changing the number of neurons in the layers to see if it affects the performance. It's also a good idea to try different optimization algorithms and see if it makes a difference. Finally, you could try increasing the size of the training dataset and see if it improves the performance of the agent.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">give me code so that to it i can provide `X` values and it gives me `Y` predictions as output using this model.</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>Here is an example of how you can use your trained model to make predictions on new data:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-makefile"><span class="hljs-comment"># Get the model's prediction for a single example</span>
X_example = X_test[0] <span class="hljs-comment"># select the first example from the test set</span>
y_pred = sarsa.model.predict(X_example)
<span class="hljs-comment"># Get the model's prediction for a batch of examples</span>
X_batch = X_test[:10] <span class="hljs-comment"># select the first 10 examples from the test set</span>
y_pred = sarsa.model.predict(X_batch)
</code></div></div></pre><p>In both cases, <code>y_pred</code> will be a numpy array containing the model's predictions for the given examples. If the model was trained to make a classification, <code>y_pred</code> will contain the predicted class probabilities for each example. If the model was trained to make a regression, <code>y_pred</code> will contain the predicted values for each example.</p></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group dark:bg-gray-800"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative flex"><span style="box-sizing: border-box; display: inline-block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: relative; max-width: 100%;"><span style="box-sizing: border-box; display: block; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; max-width: 100%;"><img alt="" aria-hidden="true" src="data:image/svg+xml,%3csvg%20xmlns=%27http://www.w3.org/2000/svg%27%20version=%271.1%27%20width=%2730%27%20height=%2730%27/%3e" style="display: block; max-width: 100%; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px;"></span><img alt="Hemang Joshi" src="" decoding="async" data-nimg="intrinsic" class="rounded-sm" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%;"><noscript></noscript></span></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap">running that code gives me output of this as `y_pred` ```1/1 [==============================] - 0s 262ms/step
array([[3.7721132e-25, 9.9999994e-01],
[1.3739600e-12, 9.9999994e-01],
[1.8862468e-17, 9.9999994e-01],
[1.4908365e-23, 9.9999994e-01],
[1.1378866e-02, 9.8862106e-01],
[2.0964241e-02, 9.7903574e-01],
[2.8753335e-09, 9.9999994e-01],
[0.0000000e+00, 9.9999994e-01],
[1.6345492e-08, 9.9999994e-01],
[3.4762805e-17, 9.9999994e-01],
[1.8261136e-07, 9.9999970e-01],
[5.1750710e-28, 9.9999994e-01],
[6.6038468e-03, 9.9339622e-01],
[0.0000000e+00, 9.9999994e-01],
[2.5457928e-12, 9.9999994e-01],
[2.8892117e-26, 9.9999994e-01],
[1.4843928e-12, 1.0000000e+00],
[0.0000000e+00, 1.0000000e+00],
[1.6631760e-02, 9.8336822e-01]], dtype=float32)``` How to interpret it ? What does this array mean in the variable `y_pred`?</div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400 md:invisible md:group-hover:visible"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M11 4H4a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7"></path><path d="M18.5 2.5a2.121 2.121 0 0 1 3 3L12 15l-4 1 1-4 9.5-9.5z"></path></svg></button></div></div></div></div><div class="w-full border-b border-black/10 dark:border-gray-900/50 text-gray-800 dark:text-gray-100 group bg-gray-50 dark:bg-[#444654]"><div class="text-base gap-4 md:gap-6 m-auto md:max-w-2xl lg:max-w-2xl xl:max-w-3xl p-4 md:py-6 flex lg:px-0"><div class="w-[30px] flex flex-col relative items-end"><div class="relative h-[30px] w-[30px] p-1 rounded-sm text-white flex items-center justify-center" style="background-color: rgb(16, 163, 127);"><svg width="41" height="41" viewBox="0 0 41 41" fill="none" xmlns="http://www.w3.org/2000/svg" stroke-width="1.5" class="h-6 w-6"><path d="M37.5324 16.8707C37.9808 15.5241 38.1363 14.0974 37.9886 12.6859C37.8409 11.2744 37.3934 9.91076 36.676 8.68622C35.6126 6.83404 33.9882 5.3676 32.0373 4.4985C30.0864 3.62941 27.9098 3.40259 25.8215 3.85078C24.8796 2.7893 23.7219 1.94125 22.4257 1.36341C21.1295 0.785575 19.7249 0.491269 18.3058 0.500197C16.1708 0.495044 14.0893 1.16803 12.3614 2.42214C10.6335 3.67624 9.34853 5.44666 8.6917 7.47815C7.30085 7.76286 5.98686 8.3414 4.8377 9.17505C3.68854 10.0087 2.73073 11.0782 2.02839 12.312C0.956464 14.1591 0.498905 16.2988 0.721698 18.4228C0.944492 20.5467 1.83612 22.5449 3.268 24.1293C2.81966 25.4759 2.66413 26.9026 2.81182 28.3141C2.95951 29.7256 3.40701 31.0892 4.12437 32.3138C5.18791 34.1659 6.8123 35.6322 8.76321 36.5013C10.7141 37.3704 12.8907 37.5973 14.9789 37.1492C15.9208 38.2107 17.0786 39.0587 18.3747 39.6366C19.6709 40.2144 21.0755 40.5087 22.4946 40.4998C24.6307 40.5054 26.7133 39.8321 28.4418 38.5772C30.1704 37.3223 31.4556 35.5506 32.1119 33.5179C33.5027 33.2332 34.8167 32.6547 35.9659 31.821C37.115 30.9874 38.0728 29.9178 38.7752 28.684C39.8458 26.8371 40.3023 24.6979 40.0789 22.5748C39.8556 20.4517 38.9639 18.4544 37.5324 16.8707ZM22.4978 37.8849C20.7443 37.8874 19.0459 37.2733 17.6994 36.1501C17.7601 36.117 17.8666 36.0586 17.936 36.0161L25.9004 31.4156C26.1003 31.3019 26.2663 31.137 26.3813 30.9378C26.4964 30.7386 26.5563 30.5124 26.5549 30.2825V19.0542L29.9213 20.998C29.9389 21.0068 29.9541 21.0198 29.9656 21.0359C29.977 21.052 29.9842 21.0707 29.9867 21.0902V30.3889C29.9842 32.375 29.1946 34.2791 27.7909 35.6841C26.3872 37.0892 24.4838 37.8806 22.4978 37.8849ZM6.39227 31.0064C5.51397 29.4888 5.19742 27.7107 5.49804 25.9832C5.55718 26.0187 5.66048 26.0818 5.73461 26.1244L13.699 30.7248C13.8975 30.8408 14.1233 30.902 14.3532 30.902C14.583 30.902 14.8088 30.8408 15.0073 30.7248L24.731 25.1103V28.9979C24.7321 29.0177 24.7283 29.0376 24.7199 29.0556C24.7115 29.0736 24.6988 29.0893 24.6829 29.1012L16.6317 33.7497C14.9096 34.7416 12.8643 35.0097 10.9447 34.4954C9.02506 33.9811 7.38785 32.7263 6.39227 31.0064ZM4.29707 13.6194C5.17156 12.0998 6.55279 10.9364 8.19885 10.3327C8.19885 10.4013 8.19491 10.5228 8.19491 10.6071V19.808C8.19351 20.0378 8.25334 20.2638 8.36823 20.4629C8.48312 20.6619 8.64893 20.8267 8.84863 20.9404L18.5723 26.5542L15.206 28.4979C15.1894 28.5089 15.1703 28.5155 15.1505 28.5173C15.1307 28.5191 15.1107 28.516 15.0924 28.5082L7.04046 23.8557C5.32135 22.8601 4.06716 21.2235 3.55289 19.3046C3.03862 17.3858 3.30624 15.3413 4.29707 13.6194ZM31.955 20.0556L22.2312 14.4411L25.5976 12.4981C25.6142 12.4872 25.6333 12.4805 25.6531 12.4787C25.6729 12.4769 25.6928 12.4801 25.7111 12.4879L33.7631 17.1364C34.9967 17.849 36.0017 18.8982 36.6606 20.1613C37.3194 21.4244 37.6047 22.849 37.4832 24.2684C37.3617 25.6878 36.8382 27.0432 35.9743 28.1759C35.1103 29.3086 33.9415 30.1717 32.6047 30.6641C32.6047 30.5947 32.6047 30.4733 32.6047 30.3889V21.188C32.6066 20.9586 32.5474 20.7328 32.4332 20.5338C32.319 20.3348 32.154 20.1698 31.955 20.0556ZM35.3055 15.0128C35.2464 14.9765 35.1431 14.9142 35.069 14.8717L27.1045 10.2712C26.906 10.1554 26.6803 10.0943 26.4504 10.0943C26.2206 10.0943 25.9948 10.1554 25.7963 10.2712L16.0726 15.8858V11.9982C16.0715 11.9783 16.0753 11.9585 16.0837 11.9405C16.0921 11.9225 16.1048 11.9068 16.1207 11.8949L24.1719 7.25025C25.4053 6.53903 26.8158 6.19376 28.2383 6.25482C29.6608 6.31589 31.0364 6.78077 32.2044 7.59508C33.3723 8.40939 34.2842 9.53945 34.8334 10.8531C35.3826 12.1667 35.5464 13.6095 35.3055 15.0128ZM14.2424 21.9419L10.8752 19.9981C10.8576 19.9893 10.8423 19.9763 10.8309 19.9602C10.8195 19.9441 10.8122 19.9254 10.8098 19.9058V10.6071C10.8107 9.18295 11.2173 7.78848 11.9819 6.58696C12.7466 5.38544 13.8377 4.42659 15.1275 3.82264C16.4173 3.21869 17.8524 2.99464 19.2649 3.1767C20.6775 3.35876 22.0089 3.93941 23.1034 4.85067C23.0427 4.88379 22.937 4.94215 22.8668 4.98473L14.9024 9.58517C14.7025 9.69878 14.5366 9.86356 14.4215 10.0626C14.3065 10.2616 14.2466 10.4877 14.2479 10.7175L14.2424 21.9419ZM16.071 17.9991L20.4018 15.4978L24.7325 17.9975V22.9985L20.4018 25.4983L16.071 22.9985V17.9991Z" fill="currentColor"></path></svg></div></div><div class="relative flex w-[calc(100%-50px)] md:flex-col lg:w-[calc(100%-115px)]"><div class="flex flex-grow flex-col gap-3"><div class="min-h-[20px] flex flex-col items-start gap-4 whitespace-pre-wrap"><div class="markdown prose w-full break-words dark:prose-invert dark"><p>The output <code>y_pred</code> is a matrix of shape <code>(n, 2)</code> where <code>n</code> is the number of samples in <code>X</code>. The first column of the matrix represents the probability of the sample belonging to the negative class (i.e., the predicted probability of the first output being <code>0</code>) and the second column represents the probability of the sample belonging to the positive class (i.e., the predicted probability of the second output being <code>1</code>).</p><p>For example, the first row <code>[3.7721132e-25, 9.9999994e-01]</code> means that for the first sample in <code>X</code>, the model predicts a probability of 3.7721132e-25 for the negative class and a probability of 9.9999994e-01 for the positive class. This means that the model is very confident that the sample belongs to the positive class.</p><p>To get the predicted class labels, you can use the <code>np.argmax()</code> function on <code>y_pred</code> to get the index of the column with the highest probability. This will give you an array of shape <code>(n,)</code> where each element is either <code>0</code> or <code>1</code>, corresponding to the predicted class label. You can then use this array as the predicted class labels for your samples in <code>X</code>.</p><p>For example, you can get the predicted class labels for <code>X</code> as follows:</p><pre><div class="bg-black mb-4 rounded-md"><div class="flex items-center relative text-gray-200 bg-gray-800 px-4 py-2 text-xs font-sans"><button class="flex ml-auto gap-2"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"></path><rect x="8" y="2" width="8" height="4" rx="1" ry="1"></rect></svg>Copy code</button></div><div class="p-4 overflow-y-auto"><code class="!whitespace-pre-wrap hljs language-makefile">predicted_labels = np.argmax(y_pred, axis=1)
</code></div></div></pre></div></div></div><div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M14 9V5a3 3 0 0 0-3-3l-4 9v11h11.28a2 2 0 0 0 2-1.7l1.38-9a2 2 0 0 0-2-2.3zM7 22H4a2 2 0 0 1-2-2v-7a2 2 0 0 1 2-2h3"></path></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10 15v4a3 3 0 0 0 3 3l4-9V2H5.72a2 2 0 0 0-2 1.7l-1.38 9a2 2 0 0 0 2 2.3zm7-13h2.67A2.31 2.31 0 0 1 22 4v7a2.31 2.31 0 0 1-2.33 2H17"></path></svg></button></div></div></div></div><div class="w-full h-48 flex-shrink-0"></div></div></div></div><div class="absolute bottom-0 left-0 w-full border-t md:border-t-0 dark:border-white/20 md:border-transparent md:dark:border-transparent md:bg-vert-light-gradient bg-white dark:bg-gray-800 md:!bg-transparent dark:md:bg-vert-dark-gradient"><form class="stretch mx-2 flex flex-row gap-3 pt-2 last:mb-2 md:last:mb-6 lg:mx-auto lg:max-w-3xl lg:pt-6"><div class="relative h-full flex-1 md:flex-col flex-col"><div class="ml-1 mt-1.5 md:w-full md:m-auto md:flex md:mb-2 gap-2 justify-center"><button class="btn flex justify-center gap-2 btn-neutral border-0 md:border"><svg stroke="currentColor" fill="none" stroke-width="1.5" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-3 w-3" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="1 4 1 10 7 10"></polyline><polyline points="23 20 23 14 17 14"></polyline><path d="M20.49 9A9 9 0 0 0 5.64 5.64L1 10m22 4l-4.64 4.36A9 9 0 0 1 3.51 15"></path></svg>Regenerate response</button></div><div class="flex flex-col w-full py-2 flex-grow md:py-3 md:pl-4 relative border border-black/10 bg-white dark:border-gray-900/50 dark:text-white dark:bg-gray-700 rounded-md shadow-[0_0_10px_rgba(0,0,0,0.10)] dark:shadow-[0_0_15px_rgba(0,0,0,0.10)]"><textarea tabindex="0" data-id="efab70d1-fd33-4742-9b9a-bfbcf1e49f70" rows="1" placeholder="" class="m-0 w-full resize-none border-0 bg-transparent p-0 pr-7 focus:ring-0 focus-visible:ring-0 dark:bg-transparent" style="max-height: 200px; height: 24px; overflow-y: hidden;"></textarea><button class="absolute p-1 rounded-md text-gray-500 bottom-1.5 right-1 md:bottom-2.5 md:right-2 hover:bg-gray-100 dark:hover:text-gray-400 dark:hover:bg-gray-900 disabled:hover:bg-transparent dark:disabled:hover:bg-transparent"><svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 20 20" class="h-4 w-4 rotate-90" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M10.894 2.553a1 1 0 00-1.788 0l-7 14a1 1 0 001.169 1.409l5-1.429A1 1 0 009 15.571V11a1 1 0 112 0v4.571a1 1 0 00.725.962l5 1.428a1 1 0 001.17-1.408l-7-14z"></path></svg></button></div><div class="web-chatgpt-toolbar flex items-baseline gap-3 mt-0" style="padding: 0em 0.5em;"><div class="web-chatgpt-toggle-web-access"><label class="web-chatgpt-toggle"><input class="web-chatgpt-toggle-checkbox" type="checkbox"><div class="web-chatgpt-toggle-switch"></div><span class="web-chatgpt-toggle-label">Search on the web</span></label></div><select class="text-sm dark:text-white ml-0 dark:bg-gray-800 border-0"><option value="1">1 result</option><option value="2">2 results</option><option value="3">3 results</option><option value="4">4 results</option><option value="5">5 results</option><option value="6">6 results</option><option value="7">7 results</option><option value="8">8 results</option><option value="9">9 results</option><option value="10">10 results</option></select><select class="text-sm dark:text-white ml-0 dark:bg-gray-800 border-0"><option value="" class="text-sm dark:text-white">Any time</option><option value="d" class="text-sm dark:text-white">Past day</option><option value="w" class="text-sm dark:text-white">Past week</option><option value="m" class="text-sm dark:text-white">Past month</option><option value="y" class="text-sm dark:text-white">Past year</option></select><select class="text-sm dark:text-white ml-0 dark:bg-gray-800 border-0"><option value="wt-wt" class="text-sm dark:text-white">Any region</option><option value="xa-ar" class="text-sm dark:text-white">Saudi Arabia</option><option value="xa-en" class="text-sm dark:text-white">Saudi Arabia (en)</option><option value="ar-es" class="text-sm dark:text-white">Argentina</option><option value="au-en" class="text-sm dark:text-white">Australia</option><option value="at-de" class="text-sm dark:text-white">Austria</option><option value="be-fr" class="text-sm dark:text-white">Belgium (fr)</option><option value="be-nl" class="text-sm dark:text-white">Belgium (nl)</option><option value="br-pt" class="text-sm dark:text-white">Brazil</option><option value="bg-bg" class="text-sm dark:text-white">Bulgaria</option><option value="ca-en" class="text-sm dark:text-white">Canada</option><option value="ca-fr" class="text-sm dark:text-white">Canada (fr)</option><option value="ct-ca" class="text-sm dark:text-white">Catalan</option><option value="cl-es" class="text-sm dark:text-white">Chile</option><option value="cn-zh" class="text-sm dark:text-white">China</option><option value="co-es" class="text-sm dark:text-white">Colombia</option><option value="hr-hr" class="text-sm dark:text-white">Croatia</option><option value="cz-cs" class="text-sm dark:text-white">Czech Republic</option><option value="dk-da" class="text-sm dark:text-white">Denmark</option><option value="ee-et" class="text-sm dark:text-white">Estonia</option><option value="fi-fi" class="text-sm dark:text-white">Finland</option><option value="fr-fr" class="text-sm dark:text-white">France</option><option value="de-de" class="text-sm dark:text-white">Germany</option><option value="gr-el" class="text-sm dark:text-white">Greece</option><option value="hk-tzh" class="text-sm dark:text-white">Hong Kong</option><option value="hu-hu" class="text-sm dark:text-white">Hungary</option><option value="in-en" class="text-sm dark:text-white">India</option><option value="id-id" class="text-sm dark:text-white">Indonesia</option><option value="id-en" class="text-sm dark:text-white">Indonesia (en)</option><option value="ie-en" class="text-sm dark:text-white">Ireland</option><option value="il-he" class="text-sm dark:text-white">Israel</option><option value="it-it" class="text-sm dark:text-white">Italy</option><option value="jp-jp" class="text-sm dark:text-white">Japan</option><option value="kr-kr" class="text-sm dark:text-white">Korea</option><option value="lv-lv" class="text-sm dark:text-white">Latvia</option><option value="lt-lt" class="text-sm dark:text-white">Lithuania</option><option value="xl-es" class="text-sm dark:text-white">Latin America</option><option value="my-ms" class="text-sm dark:text-white">Malaysia</option><option value="my-en" class="text-sm dark:text-white">Malaysia (en)</option><option value="mx-es" class="text-sm dark:text-white">Mexico</option><option value="nl-nl" class="text-sm dark:text-white">Netherlands</option><option value="nz-en" class="text-sm dark:text-white">New Zealand</option><option value="no-no" class="text-sm dark:text-white">Norway</option><option value="pe-es" class="text-sm dark:text-white">Peru</option><option value="ph-en" class="text-sm dark:text-white">Philippines</option><option value="ph-tl" class="text-sm dark:text-white">Philippines (tl)</option><option value="pl-pl" class="text-sm dark:text-white">Poland</option><option value="pt-pt" class="text-sm dark:text-white">Portugal</option><option value="ro-ro" class="text-sm dark:text-white">Romania</option><option value="ru-ru" class="text-sm dark:text-white">Russia</option><option value="sg-en" class="text-sm dark:text-white">Singapore</option><option value="sk-sk" class="text-sm dark:text-white">Slovak Republic</option><option value="sl-sl" class="text-sm dark:text-white">Slovenia</option><option value="za-en" class="text-sm dark:text-white">South Africa</option><option value="es-es" class="text-sm dark:text-white">Spain</option><option value="se-sv" class="text-sm dark:text-white">Sweden</option><option value="ch-de" class="text-sm dark:text-white">Switzerland (de)</option><option value="ch-fr" class="text-sm dark:text-white">Switzerland (fr)</option><option value="ch-it" class="text-sm dark:text-white">Switzerland (it)</option><option value="tw-tzh" class="text-sm dark:text-white">Taiwan</option><option value="th-th" class="text-sm dark:text-white">Thailand</option><option value="tr-tr" class="text-sm dark:text-white">Turkey</option><option value="ua-uk" class="text-sm dark:text-white">Ukraine</option><option value="uk-en" class="text-sm dark:text-white">United Kingdom</option><option value="us-en" class="text-sm dark:text-white">United States</option><option value="ue-es" class="text-sm dark:text-white">United States (es)</option><option value="ve-es" class="text-sm dark:text-white">Venezuela</option><option value="vn-vi" class="text-sm dark:text-white">Vietnam</option></select></div></div></form><div class="px-3 pt-2 pb-3 text-center text-xs text-black/50 dark:text-white/50 md:px-4 md:pt-3 md:pb-6"><a href="https://help.openai.com/en/articles/6825453-chatgpt-release-notes" target="_blank" rel="noreferrer" class="underline">ChatGPT Dec 15 Version</a>. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.<div><a href="https://github.com/qunash/chatgpt-advanced" target="_blank" class="underline">WebChatGPT extension v.1.1.1</a>. If you like the extension, please consider <a href="https://www.buymeacoffee.com/anzorq" target="_blank" class="underline">supporting me</a>.</div></div></div></main></div><div class="dark hidden bg-gray-900 md:fixed md:inset-y-0 md:flex md:w-[260px] md:flex-col"><div class="flex h-full min-h-0 flex-col "><div class="scrollbar-trigger flex h-full w-full flex-1 items-start border-white/20"><nav class="flex h-full flex-1 flex-col space-y-1 p-2"><a class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm mb-2 flex-shrink-0 border border-white/20"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><line x1="12" y1="5" x2="12" y2="19"></line><line x1="5" y1="12" x2="19" y2="12"></line></svg>New chat</a><div class="flex-col flex-1 overflow-y-auto border-b border-white/20"><div class="flex flex-col gap-2 text-gray-100 text-sm"><a class="flex py-3 px-3 items-center gap-3 relative rounded-md cursor-pointer break-all pr-14 bg-gray-800 hover:bg-gray-800 group"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path></svg><div class="flex-1 text-ellipsis max-h-5 overflow-hidden break-all relative">Fixing RL training error<div class="absolute inset-y-0 right-0 w-8 z-10 bg-gradient-to-l from-gray-800"></div></div><div class="absolute flex right-1 z-10 text-gray-300 visible"><button class="p-1 hover:text-white"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M12 20h9"></path><path d="M16.5 3.5a2.121 2.121 0 0 1 3 3L7 19l-4 1 1-4L16.5 3.5z"></path></svg></button><button class="p-1 hover:text-white"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="3 6 5 6 21 6"></polyline><path d="M19 6v14a2 2 0 0 1-2 2H7a2 2 0 0 1-2-2V6m3 0V4a2 2 0 0 1 2-2h4a2 2 0 0 1 2 2v2"></path><line x1="10" y1="11" x2="10" y2="17"></line><line x1="14" y1="11" x2="14" y2="17"></line></svg></button></div></a><a class="flex py-3 px-3 items-center gap-3 relative rounded-md hover:bg-[#2A2B32] cursor-pointer break-all hover:pr-4 group"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path></svg><div class="flex-1 text-ellipsis max-h-5 overflow-hidden break-all relative">Python Code Visualization Library<div class="absolute inset-y-0 right-0 w-8 z-10 bg-gradient-to-l from-gray-900 group-hover:from-[#2A2B32]"></div></div></a><a class="flex py-3 px-3 items-center gap-3 relative rounded-md hover:bg-[#2A2B32] cursor-pointer break-all hover:pr-4 group"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path></svg><div class="flex-1 text-ellipsis max-h-5 overflow-hidden break-all relative">Creating SEO Plugin for WP<div class="absolute inset-y-0 right-0 w-8 z-10 bg-gradient-to-l from-gray-900 group-hover:from-[#2A2B32]"></div></div></a></div></div><a class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><polyline points="3 6 5 6 21 6"></polyline><path d="M19 6v14a2 2 0 0 1-2 2H7a2 2 0 0 1-2-2V6m3 0V4a2 2 0 0 1 2-2h4a2 2 0 0 1 2 2v2"></path><line x1="10" y1="11" x2="10" y2="17"></line><line x1="14" y1="11" x2="14" y2="17"></line></svg>Clear conversations</a><a class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><circle cx="12" cy="12" r="5"></circle><line x1="12" y1="1" x2="12" y2="3"></line><line x1="12" y1="21" x2="12" y2="23"></line><line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line><line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line><line x1="1" y1="12" x2="3" y2="12"></line><line x1="21" y1="12" x2="23" y2="12"></line><line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line><line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line></svg>Light mode</a><a href="https://discord.gg/openai" target="_blank" class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm"><svg stroke="currentColor" fill="currentColor" stroke-width="2" viewBox="0 0 640 512" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M524.531,69.836a1.5,1.5,0,0,0-.764-.7A485.065,485.065,0,0,0,404.081,32.03a1.816,1.816,0,0,0-1.923.91,337.461,337.461,0,0,0-14.9,30.6,447.848,447.848,0,0,0-134.426,0,309.541,309.541,0,0,0-15.135-30.6,1.89,1.89,0,0,0-1.924-.91A483.689,483.689,0,0,0,116.085,69.137a1.712,1.712,0,0,0-.788.676C39.068,183.651,18.186,294.69,28.43,404.354a2.016,2.016,0,0,0,.765,1.375A487.666,487.666,0,0,0,176.02,479.918a1.9,1.9,0,0,0,2.063-.676A348.2,348.2,0,0,0,208.12,430.4a1.86,1.86,0,0,0-1.019-2.588,321.173,321.173,0,0,1-45.868-21.853,1.885,1.885,0,0,1-.185-3.126c3.082-2.309,6.166-4.711,9.109-7.137a1.819,1.819,0,0,1,1.9-.256c96.229,43.917,200.41,43.917,295.5,0a1.812,1.812,0,0,1,1.924.233c2.944,2.426,6.027,4.851,9.132,7.16a1.884,1.884,0,0,1-.162,3.126,301.407,301.407,0,0,1-45.89,21.83,1.875,1.875,0,0,0-1,2.611,391.055,391.055,0,0,0,30.014,48.815,1.864,1.864,0,0,0,2.063.7A486.048,486.048,0,0,0,610.7,405.729a1.882,1.882,0,0,0,.765-1.352C623.729,277.594,590.933,167.465,524.531,69.836ZM222.491,337.58c-28.972,0-52.844-26.587-52.844-59.239S193.056,219.1,222.491,219.1c29.665,0,53.306,26.82,52.843,59.239C275.334,310.993,251.924,337.58,222.491,337.58Zm195.38,0c-28.971,0-52.843-26.587-52.843-59.239S388.437,219.1,417.871,219.1c29.667,0,53.307,26.82,52.844,59.239C470.715,310.993,447.538,337.58,417.871,337.58Z"></path></svg>OpenAI Discord</a><a href="https://help.openai.com/en/collections/3742473-chatgpt" target="_blank" class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M18 13v6a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2V8a2 2 0 0 1 2-2h6"></path><polyline points="15 3 21 3 21 9"></polyline><line x1="10" y1="14" x2="21" y2="3"></line></svg>Updates & FAQ</a><a class="flex py-3 px-3 items-center gap-3 rounded-md hover:bg-gray-500/10 transition-colors duration-200 text-white cursor-pointer text-sm"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"><path d="M9 21H5a2 2 0 0 1-2-2V5a2 2 0 0 1 2-2h4"></path><polyline points="16 17 21 12 16 7"></polyline><line x1="21" y1="12" x2="9" y2="12"></line></svg>Log out</a></nav></div></div></div></div></div><script id="__NEXT_DATA__" type="application/json">{"props":{"pageProps":{"user":{"id":"user-YKp2qOxLkbc7VJrGIBwo4NSX","name":"Hemang Joshi","email":"hemangjoshi37a2@gmail.com","image":"https://lh3.googleusercontent.com/a/AEdFTp4PBLOx6nHmw3V2IJ0RR55GsxeFhqfha-2lBL6F=s96-c","picture":"https://lh3.googleusercontent.com/a/AEdFTp4PBLOx6nHmw3V2IJ0RR55GsxeFhqfha-2lBL6F=s96-c","groups":[],"features":["saveHistory"]},"accessToken":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik1UaEVOVUpHTkVNMVFURTRNMEZCTWpkQ05UZzVNRFUxUlRVd1FVSkRNRU13UmtGRVFrRXpSZyJ9.eyJodHRwczovL2FwaS5vcGVuYWkuY29tL3Byb2ZpbGUiOnsiZW1haWwiOiJoZW1hbmdqb3NoaTM3YTJAZ21haWwuY29tIiwiZW1haWxfdmVyaWZpZWQiOnRydWUsImdlb2lwX2NvdW50cnkiOiJJTiJ9LCJodHRwczovL2FwaS5vcGVuYWkuY29tL2F1dGgiOnsidXNlcl9pZCI6InVzZXItWUtwMnFPeExrYmM3VkpyR0lCd280TlNYIn0sImlzcyI6Imh0dHBzOi8vYXV0aDAub3BlbmFpLmNvbS8iLCJzdWIiOiJnb29nbGUtb2F1dGgyfDEwMzcxMjY3NjI2Nzc2ODY2NDE4NyIsImF1ZCI6WyJodHRwczovL2FwaS5vcGVuYWkuY29tL3YxIiwiaHR0cHM6Ly9vcGVuYWkuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI6MTY3MzMyNzQ5MSwiZXhwIjoxNjczOTMyMjkxLCJhenAiOiJUZEpJY2JlMTZXb1RIdE45NW55eXdoNUU0eU9vNkl0RyIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZW1haWwgbW9kZWwucmVhZCBtb2RlbC5yZXF1ZXN0IG9yZ2FuaXphdGlvbi5yZWFkIG9mZmxpbmVfYWNjZXNzIn0.vfIa6fsrNa0aFB0WGIMQbs-nMW2eQA0GJ8WheP_mZv-P2AapA214b_qzlnCGjc-xMbgPaYk51hYJGoW_e8VSwvk7Mor4a_QPaaWUiT3Eiuvu0FvX93CugryCBRWSLQCGhX-rG5ZW11PnCPXBFVo3JvN0V2BTNghPfGq4kCvJ8xsjBxZvcky-RFC7t5AGMFMNkMe49uS6DV1tYiYaxUFOr07e8HZyNya10HSlRz03k2rQDrw-Tf34VgnnwAxfk8d3WuogjcrXo0snRugzDM9Lr27C9XwVH-2w0MAUOgTr34Iopl-dWD9FF2RVZlFVMCxXHmRTuIAhuufgbjgSBD7ptw","features":["saveHistory"],"pages":[{"id":"chat","name":"ChatGPT","href":"/chat","theme":{"icon":"globe","color":"#10A37F"},"description":"Chat with GPT"}],"serviceStatus":{},"initialData":{"thread":{"root":{"id":"root","children":[],"parentId":"","type":"root","message":{"id":"3a54f9f8-bd5f-4e9a-8820-95a4c11b6cb8","role":"unknown","content":{"content_type":"text","parts":[]}}}},"currentLeafId":"root","threadId":null,"title":"New chat"}},"__N_SSP":true},"page":"/chat/[[...chatId]]","query":{},"buildId":"fP4gwVyNWd83FgDAS-yQE","isFallback":false,"gssp":true,"scriptLoader":[]}</script><next-route-announcer><p aria-live="assertive" id="__next-route-announcer__" role="alert" style="border: 0px; clip: rect(0px, 0px, 0px, 0px); height: 1px; margin: -1px; overflow: hidden; padding: 0px; position: absolute; width: 1px; white-space: nowrap; overflow-wrap: normal;">New chat</p></next-route-announcer><link rel="stylesheet" type="text/css" href="chrome-extension://liecbddmkiiihnedobmlmillhodjkdmb/css/blur.css" class="loom-blur-styles"></body><loom-container id="lo-engage-ext-container"><loom-shadow classname="resolved"></loom-shadow></loom-container><loom-container id="lo-companion-container"><loom-shadow classname="resolved"></loom-shadow></loom-container></html>