-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
146 lines (109 loc) · 5.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
from PIL import Image
def DepthNorm(x, maxDepth):
return maxDepth / x
def predict(model, images, minDepth=10, maxDepth=1000, batch_size=2):
# Support multiple RGBs, one RGB image, even grayscale
if len(images.shape) < 3: images = np.stack((images,images,images), axis=2)
if len(images.shape) < 4: images = images.reshape((1, images.shape[0], images.shape[1], images.shape[2]))
# Compute predictions
predictions = model.predict(images, batch_size=batch_size)
# Put in expected range
return np.clip(DepthNorm(predictions, maxDepth=1000), minDepth, maxDepth) / maxDepth
def scale_up(scale, images):
from skimage.transform import resize
scaled = []
for i in range(len(images)):
img = images[i]
output_shape = (scale * img.shape[0], scale * img.shape[1])
scaled.append( resize(img, output_shape, order=1, preserve_range=True, mode='reflect', anti_aliasing=True ) )
return np.stack(scaled)
def load_images(image_files):
loaded_images = []
for file in image_files:
x = np.clip(np.asarray(Image.open( file ), dtype=float) / 255, 0, 1)
loaded_images.append(x)
return np.stack(loaded_images, axis=0)
def to_multichannel(i):
if i.shape[2] == 3: return i
i = i[:,:,0]
return np.stack((i,i,i), axis=2)
def display_images(outputs, inputs=None, gt=None, is_colormap=True, is_rescale=True):
import matplotlib.pyplot as plt
import skimage
from skimage.transform import resize
plasma = plt.get_cmap('plasma')
shape = (outputs[0].shape[0], outputs[0].shape[1], 3)
all_images = []
for i in range(outputs.shape[0]):
imgs = []
if isinstance(inputs, (list, tuple, np.ndarray)):
x = to_multichannel(inputs[i])
x = resize(x, shape, preserve_range=True, mode='reflect', anti_aliasing=True )
imgs.append(x)
if isinstance(gt, (list, tuple, np.ndarray)):
x = to_multichannel(gt[i])
x = resize(x, shape, preserve_range=True, mode='reflect', anti_aliasing=True )
imgs.append(x)
if is_colormap:
rescaled = outputs[i][:,:,0]
if is_rescale:
rescaled = rescaled - np.min(rescaled)
rescaled = rescaled / np.max(rescaled)
imgs.append(plasma(rescaled)[:,:,:3])
else:
imgs.append(to_multichannel(outputs[i]))
img_set = np.hstack(imgs)
all_images.append(img_set)
all_images = np.stack(all_images)
return skimage.util.montage(all_images, multichannel=True, fill=(0,0,0))
def save_images(filename, outputs, inputs=None, gt=None, is_colormap=True, is_rescale=False):
montage = display_images(outputs, inputs, is_colormap, is_rescale)
im = Image.fromarray(np.uint8(montage*255))
im.save(filename)
def load_test_data(test_data_zip_file='nyu_test.zip'):
print('Loading test data...', end='')
import numpy as np
from data import extract_zip
data = extract_zip(test_data_zip_file)
from io import BytesIO
rgb = np.load(BytesIO(data['eigen_test_rgb.npy']))
depth = np.load(BytesIO(data['eigen_test_depth.npy']))
crop = np.load(BytesIO(data['eigen_test_crop.npy']))
print('Test data loaded.\n')
return {'rgb':rgb, 'depth':depth, 'crop':crop}
def evaluate(model, rgb, depth, crop, batch_size=6, verbose=True):
# Error computaiton based on https://github.com/tinghuiz/SfMLearner
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
abs_rel = np.mean(np.abs(gt - pred) / gt)
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
log_10 = (np.abs(np.log10(gt)-np.log10(pred))).mean()
return a1, a2, a3, abs_rel, rmse, log_10
depth_scores = np.zeros((6, len(rgb))) # six metrics
bs = batch_size
for i in range(len(rgb)//bs):
x = rgb[(i)*bs:(i+1)*bs,:,:,:]
# Compute results
true_y = depth[(i)*bs:(i+1)*bs,:,:]
pred_y = scale_up(2, predict(model, x/255, minDepth=10, maxDepth=1000, batch_size=bs)[:,:,:,0]) * 10.0
# Test time augmentation: mirror image estimate
pred_y_flip = scale_up(2, predict(model, x[...,::-1,:]/255, minDepth=10, maxDepth=1000, batch_size=bs)[:,:,:,0]) * 10.0
# Crop based on Eigen et al. crop
true_y = true_y[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
pred_y = pred_y[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
pred_y_flip = pred_y_flip[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
# Compute errors per image in batch
for j in range(len(true_y)):
errors = compute_errors(true_y[j], (0.5 * pred_y[j]) + (0.5 * np.fliplr(pred_y_flip[j])))
for k in range(len(errors)):
depth_scores[k][(i*bs)+j] = errors[k]
e = depth_scores.mean(axis=1)
if verbose:
print("{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format('a1', 'a2', 'a3', 'rel', 'rms', 'log_10'))
print("{:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}".format(e[0],e[1],e[2],e[3],e[4],e[5]))
return e