-
Notifications
You must be signed in to change notification settings - Fork 1
/
promp.py
executable file
·374 lines (280 loc) · 12.9 KB
/
promp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
import sys, time, os
import numpy as np
from scipy import linalg
class ProMP:
def __init__(self, ndemos, obs_dofs, robot_dofs, training_address):
self.ndemos = ndemos
self.obs_dofs = obs_dofs
self.robot_dofs = robot_dofs
self.stdev = 0.005
self.dt = 0.01
self.count = 0
self.start = 1
self.p_data, self.q_data = self.loadData(self.dt, training_address)
self.promp = self.pmpRegression(self.q_data)
self.param = {"nTraj": self.p_data["size"], "nTotalJoints": self.promp["nJoints"], "observedJointPos": np.array(range(obs_dofs)), "observedJointVel": np.array([])}
print "Initialized"
def predictTraining(self, demo=0):
'''
'''
self.phase = 99
obs = self.q_data[demo][self.phase, :self.obs_dofs]
print obs
return self.predictTest(obs)
def predictTest(self, obs, phase=99):
"""
ProMP Estimation
:param obs:
:param phase:
:return:
"""
self.obs_pose = obs
self.phase = phase
obs = self.Observation(self.stdev, self.param, self.p_data, self.obs_pose)
self.kf = self.kfLoop(self.promp, self.param, obs)
return self.kf["q_mean"]
def loadData(self, dt, training_address):
robot_data, obs_data = [], []
for i in range(self.ndemos):
robot = np.loadtxt(open(training_address + "/robot_demo_"+ str(i+1) +".csv", "rb"), delimiter=",")
robot_data.append(robot)
obs = np.loadtxt(open(training_address + "/object_demo_"+ str(i+1) +".csv", "rb"), delimiter=",")
obs_data.append(obs)
robot, robot_mean = self.addVelocity(robot_data)
obs, obs_mean = self.addVelocity(obs_data)
demo_data = []
for i in range(len(robot)):
demo_data.append(np.concatenate((obs[i], robot[i]),axis=1))
demo_mean = np.concatenate((obs_mean,robot_mean), axis=1)
demo = {"q":[], "qdot":[], "q_mean":[], "q_cov":[], "q_var":[], "qdot_mean":[], "qdot_cov":[], "qdot_var":[]}
for i in range(demo_data[0].shape[1]/2):
q = q_dot = []
for j in range(len(demo_data)):
q.append(demo_data[j][:,2*i].T)
q_dot.append(demo_data[j][:,(2*i)+1].T) #TODO: Velocity not recalculated like in MATLAB. VERIFY!!???
demo["q"].append(np.matrix(q))
demo["qdot"].append(np.matrix(q_dot))
for i in range(demo_data[0].shape[1]/2):
demo["q_mean"].append(np.mean(demo["q"][i],axis=0))
demo["q_cov"].append(np.cov(demo["q"][i].T))
demo["q_var"].append(np.var(demo["q"][i],axis=0,ddof=1).T)
demo["qdot_mean"].append(np.mean(demo["qdot"][i],axis=0))
demo["qdot_cov"].append(np.cov(demo["qdot"][i].T))
demo["qdot_var"].append(np.var(demo["qdot"][i],axis=0,ddof=1).T)
demo["size"] = demo_data[0].shape[0]
demo_q = []
for i in range(len(demo_data)):
q = []
for j in range(demo_data[0].shape[1]/2):
q.append(demo_data[i][:,2*j])
demo_q.append(np.matrix(q).T)
print "Data Loaded"
return demo, demo_q
def addVelocity(self, data):
for k in range(len(data)):
d = data[k]
vel = np.zeros((d.shape[0],2*d.shape[1]))
for i in range(d.shape[1]):
vel[:,2*i] = d[:,i]
for j in range(1,d.shape[0]):
vel[j,(2*i)+1] = (d[j,i] - d[j-1,i])/self.dt
vel_d = np.zeros((100,vel.shape[1]))
for i in range(vel.shape[1]):
xo = np.linspace(0,99,100)
xp = np.linspace(0,99,d.shape[0])
vel_d[:,i] = np.interp(xo,xp,vel[:,i])
data[k] = vel_d
mean = sum(data)/len(data)
return data, mean
def pmpRegression(self, data, nBasis=30):
nJoints = data[0].shape[1]
nDemo = len(data)
nTraj = data[0].shape[0]
mu_location = np.linspace(0, 1, nBasis)
phase = self.Phase(self.dt)
weight = {"nBasis":nBasis, "nJoints":nJoints, "nTraj":nTraj, "nDemo":nDemo}
weight["my_linRegRidgeFactor"] = 1e-08 * np.identity(nBasis)
sigma = 0.05 * np.ones((1, nBasis))
basis = self.generateGaussianBasis(phase, mu_location, sigma)
weight = self.leastSquareOnWeights(weight, basis["Gn"], data)
pmp = {"phase":phase, "w":weight, "basis":basis, "nBasis":nBasis, "nJoints":nJoints, "nDemo":nDemo, "nTraj":nTraj}
return pmp
def Phase(self,t):
phase = {"dt":t}
phase["z"] = np.linspace(t, 1, 1/t)
zd = np.diff(phase["z"])/t
phase["zd"] = np.append(zd,zd[-1])
zdd = np.diff(phase["zd"])/t
phase["zdd"] = np.append(zdd,zdd[-1])
return phase
# def Weight(nBasis,nJoints,nTraj,nDemo):
# weight = {"nBasis":nBasis, "nJoints":nJoints, "nTraj":nTraj, "nDemo":nDemo}
# weight["my_linRegRidgeFactor"] = 1e-08 * np.ones((nBasis,nBasis))
def generateGaussianBasis(self,phase,mu,sigma):
basisCenter = mu
z = phase["z"]
zd = phase["zd"]
zdd = phase["zdd"]
z_minus_center = np.matrix(z).T - np.matrix(basisCenter)
at = np.multiply(z_minus_center, (1.0/sigma))
Basis = {}
basis = np.multiply(np.exp(-0.5*np.power(at,2)), 1./sigma/np.sqrt(2*np.pi))
basis_sum = np.sum(basis, axis=1)
basis_n = np.multiply(basis, 1.0/basis_sum)
z_minus_center_sigma = np.multiply(-z_minus_center, 1.0/np.power(sigma,2))
basisD = np.multiply(z_minus_center_sigma, basis)
# normalizing basisD
basisD_sum = np.sum(basisD, axis=1)
basisD_n_a = np.multiply(basisD, basis_sum)
basisD_n_b = np.multiply(basis, basisD_sum)
basisD_n = np.multiply(basisD_n_a - basisD_n_b, 1.0/np.power(basis_sum,2))
# second derivative of the basis
tmp = np.multiply(basis, -1.0/np.power(sigma,2))
basisDD = tmp + np.multiply(z_minus_center_sigma, basisD)
basisDD_sum = np.sum(basisDD, axis=1)
# normalizing basisDD
basisDD_n_a = np.multiply(basisDD, np.power(basis_sum,2))
basisDD_n_b1 = np.multiply(basisD, basis_sum)
basisDD_n_b = np.multiply(basisDD_n_b1, basisD_sum)
basisDD_n_c1 = 2 * np.power(basisD_sum,2) - np.multiply(basis_sum, basisDD_sum)
basisDD_n_c = np.multiply(basis, basisDD_n_c1)
basisDD_n_d = basisDD_n_a - 2 * basisDD_n_b + basisDD_n_c
basisDD_n = np.multiply(basisDD_n_d, 1.0/np.power(basis_sum,3))
basisDD_n = np.multiply(basisDD_n, np.matrix(np.power(zd,2)).T) + np.multiply(basisD_n, np.matrix(zdd).T)
basisD_n = np.multiply(basisD_n, np.matrix(zd).T)
Basis["Gn"] = basis_n
Basis["Gndot"] = basisD_n
Basis["Gnddot"] = basisDD_n
return Basis
def leastSquareOnWeights(self,weight,Gn,data):
weight["demo_q"] = data
nDemo = weight["nDemo"]
nJoints = weight["nJoints"]
nBasis = weight["nBasis"]
my_linRegRidgeFactor = weight["my_linRegRidgeFactor"]
MPPI = np.linalg.solve(Gn.T*Gn + my_linRegRidgeFactor, Gn.T)
w, ind = [], []
for i in range(nJoints):
w_j = np.empty((0,nBasis), float)
for j in range(nDemo):
w_ = MPPI*data[j][:, i]
w_j = np.append(w_j, w_.T, axis=0)
w.append(w_j)
ind.append(np.matrix(range(i*nBasis, (i+1)*nBasis)))
weight["index"] = ind
weight["w_full"] = np.empty((nDemo,0), float)
for i in range(nJoints):
weight["w_full"] = np.append(weight["w_full"], w[i], axis=1)
weight["cov_full"] = np.cov(weight["w_full"].T)
weight["mean_full"] = np.mean(weight["w_full"], axis=0).T
return weight
def Observation(self, stdev, param, p_data, obs_data):
obs = {"joint": param["observedJointPos"], "jointvel": param["observedJointVel"], "stdev": stdev}
obs["q"] = np.zeros((param["nTotalJoints"], param["nTraj"]))
obs["qdot"] = np.zeros((param["nTotalJoints"], param["nTraj"]))
obs["index"] = [99]
for i in obs["joint"]:
obs["q"][i, obs["index"]] = obs_data[0, i]
return obs
def kfLoop(self, promp, param, obs):
sigma_obs = obs["stdev"]
P0 = promp["w"]["cov_full"]
x0 = promp["w"]["mean_full"]
R_obs = (sigma_obs**2)*np.identity(2*param["nTotalJoints"])
for k in obs["index"]:
H0 = self.observationMatrix(k, promp, obs["joint"], obs["jointvel"])
z0 = np.empty((0, 0), float)
for i in range(promp["nJoints"]):
z0 = np.append(z0, obs["q"][i, k])
z0 = np.append(z0, obs["qdot"][i, k])
z0 = np.matrix(z0).T
x0, P0 = self.kfRecursion(x0, P0, H0, z0, R_obs)
jointKF = self.perJointPromp(x0, P0, promp)
return jointKF
def kfRecursion(self, x_old, P_old, H, z, R_obs):
H, P_old = np.matrix(H), np.matrix(P_old)
tmp = np.matmul(H,np.matmul(P_old, H.T)) + R_obs
K = np.matmul(np.matmul(P_old, H.T), np.linalg.inv(tmp))
P_new = P_old - (K*H*P_old)
x_new = x_old + K*(z - (H*x_old))
return x_new, P_new
def observationMatrix(self, k, p, observedJointPos, observedJointVel):
nJoints = p["nJoints"]
nTraj = p["nTraj"]
Gn = p["basis"]["Gn"]
Gn_d = p["basis"]["Gndot"]
normalizedTime = k
Hq_measured = Gn[normalizedTime, :]
Hqdot_measured = Gn_d[normalizedTime, :]
Hq_unmeasured = np.zeros((1, p["nBasis"]))
Hqdot_unmeasured = np.zeros((1, p["nBasis"]))
H = []
for i in range(nJoints):
if not observedJointPos.all:
H_temp = Hq_unmeasured
else:
if np.sum(i == observedJointPos) == 0:
H_temp = Hq_unmeasured
else:
H_temp = Hq_measured
if not observedJointVel: #when joint vel not observed
H_temp = np.append(H_temp, Hqdot_unmeasured, axis = 0)
else:
if np.sum(j==observedJointVel)==0:
H_temp = np.append(H_temp, Hqdot_unmeasured, axis = 0)
else:
H_temp = np.append(H_temp, Hqdot_measured, axis = 0)
H.append(H_temp)
H = linalg.block_diag(*H)
return H
def perJointPromp(self, xFull, Pfull,pmp):
nBasis = pmp["nBasis"]
nTraj = pmp["nTraj"]
kf = {"w_mean": [], "w_sigma": [], "w_sigma_ii": [], "q_mean": [], "q_sigma_ii": [], "qdot_mean": [], "qdot_sigma_ii": []}
for i in range(pmp["nJoints"]):
ind = np.array(range(i*nBasis,(i+1)*nBasis))
kf["w_mean"].append(xFull[ind])
kf["w_sigma"].append(Pfull[ind,:][:,ind])
kf["w_sigma_ii"].append(np.diag(kf["w_sigma"][i]))
q_mean, q_sigma_ii, qdot_mean, qdot_sigma_ii = self.thetaToTraj(kf["w_mean"][i], kf["w_sigma"][i], pmp["basis"], pmp["phase"]["dt"], nTraj)
kf["q_mean"].append(q_mean)
kf["q_sigma_ii"].append(q_sigma_ii)
kf["qdot_mean"].append(qdot_mean)
kf["qdot_sigma_ii"].append(qdot_sigma_ii)
return kf
def thetaToTraj(self, w_mean, P_w, basis, phase_dt, nTraj):
x_mean = []
x_sigma_ii = []
xdot_mean = []
xdot_sigma_ii = []
for i in range(nTraj-1):
timePoint = i*phase_dt
mu_x,_,sigma_t = self.getDistribtionsAtTimeT1(w_mean,P_w,basis,phase_dt,timePoint)
x_mean = np.append(x_mean, mu_x[0])
xdot_mean = np.append(xdot_mean, mu_x[1])
x_sigma_ii = np.append(x_sigma_ii, sigma_t[0,0]) #TODO: check indexing
xdot_sigma_ii = np.append(x_sigma_ii, sigma_t[1,1])
return x_mean, x_sigma_ii, xdot_mean, xdot_sigma_ii
def getDistribtionsAtTimeT1(self, w_mu, w_cov, basis, dt, timePoint):
timePointIndex = int(round(timePoint/dt))
Psi_t = basis["Gn"][timePointIndex,:]
Psi_td = basis["Gndot"][timePointIndex,:]
Psi_tdd = basis["Gnddot"][timePointIndex,:]
Psi_t1 = basis["Gn"][timePointIndex+1,:]
Psi_t1d = basis["Gndot"][timePointIndex+1,:]
Phi_t = np.append(Psi_t.T, Psi_td.T, axis=1)
Phi_t1 = np.append(Psi_t1.T, Psi_t1d.T, axis=1)
Phi_td = np.append(Psi_td.T, Psi_tdd.T, axis=1)
mu_x = Phi_t.T * w_mu
mu_xd = Phi_td.T * w_mu
# print w_cov.shape
sigma_t = Phi_t.T * w_cov * Phi_t
sigma_t1 = Phi_t1.T * w_cov * Phi_t1
sigma_t_t1 = Phi_t.T * w_cov * Phi_t1
sigma_td_half = Phi_td.T * w_cov * Phi_t
return mu_x, mu_xd, sigma_t #, sigma_t1, sigma_t_t1, sigma_td_half
def main(args):
pmp = ProMP()
if __name__ == '__main__':
main(sys.argv)