forked from ISSResearch/Dataset-Converters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_json_datasets.py
executable file
·124 lines (99 loc) · 5.46 KB
/
merge_json_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Merges multiple datasets in COCO format."""
import numpy as np
import argparse
import copy
from itertools import groupby
import json
import os
import shutil
import sys
from dataset_converters.utils import ensure_folder_exists_and_is_clear
def unique(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def filter_annotations(annotations, ids):
annotations['annotations'] = [x for x in annotations['annotations'] if x['category_id'] in ids]
filtered_image_ids = unique([x['image_id'] for x in annotations['annotations']])
annotations['images'] = [x for x in annotations['images'] if x['id'] in filtered_image_ids]
annotations['categories'] = [x for x in annotations['categories'] if x['id'] in ids]
def merge_categories(merged_categories, categories):
ids = [x['id'] for x in merged_categories]
merged_categories.extend([x for x in categories if x['id'] not in ids])
def map_ids(annotations, ids, output_ids):
id_to_output_id = {x: y for x, y in zip(ids, output_ids)}
for instance in annotations['annotations']:
instance['category_id'] = id_to_output_id[instance['category_id']]
for category in annotations['categories']:
category['id'] = id_to_output_id[category['id']]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog='Typical usage: merge_json_datasets.py ' +
'-d <path_to_images_1> -a <path_to_annotations_1> -i <list_of_ids_to_merge_1> ... ' +
'-d <path_to_images_n> -a <path_to_annotations_n> -i <list_of_ids_to_merge_n> ' +
'--output-ids <list_of_output_ids> -o <path_to_output_dataset>\n'
)
parser.add_argument('-d', '--dataset', help='path to image directories', action='append', required=True)
parser.add_argument('-a', '--annotations', help='path to annotations', action='append', required=True)
parser.add_argument('-o', '--output', help='path to output directory', required=True)
parser.add_argument('-i', '--ids', help='class ids to merge', action='append', nargs='+', required=True, type=int)
parser.add_argument('-n', '--names', help='name of classes', nargs='+')
parser.add_argument('--output-ids', help='output label ids', nargs='+', required=True, type=int)
args = parser.parse_args()
ids = np.array(args.ids)
assert(ids.shape[0] == len(args.dataset))
assert(ids.shape[1] == len(args.output_ids))
assert(len(args.annotations) == len(args.dataset))
ensure_folder_exists_and_is_clear(args.output)
ensure_folder_exists_and_is_clear(os.path.join(args.output, 'annotations'))
ensure_folder_exists_and_is_clear(os.path.join(args.output, 'train'))
current_image_id = 1
current_instance_id = 1
merged_annotations = {'annotations': [], 'categories': [], 'images': []}
for i, (images_path, annotations_path, ids_to_merge) in enumerate(zip(args.dataset, args.annotations, ids)):
with open(annotations_path, 'r') as f:
annotations = json.load(f)
images_ids_with_annotations = set(unique([x['image_id'] for x in annotations['annotations']]))
all_image_ids = {x['id'] for x in annotations['images']}
for image_id in all_image_ids - images_ids_with_annotations:
image_description = copy.deepcopy([x for x in annotations['images'] if x['id'] == image_id][0])
image_description['id'] = current_image_id
new_filename = '{}_{}'.format(i, image_description['file_name'])
shutil.copy(
os.path.join(images_path, image_description['file_name']),
os.path.join(args.output, 'train', new_filename)
)
image_description['file_name'] = new_filename
merged_annotations['images'].append(image_description)
current_image_id += 1
filter_annotations(annotations, ids_to_merge)
map_ids(annotations, ids_to_merge, args.output_ids)
merge_categories(merged_annotations['categories'], annotations['categories'])
image_id_order = lambda x: x['image_id']
annotations['annotations'].sort(key=image_id_order)
for key, g in groupby(annotations['annotations'], image_id_order):
image_description = copy.deepcopy([x for x in annotations['images'] if x['id'] == key][0])
image_description['id'] = current_image_id
for instance in g:
instance['image_id'] = current_image_id
instance['id'] = current_instance_id
merged_annotations['annotations'].append(instance)
current_instance_id += 1
new_filename = '{}_{}'.format(i, image_description['file_name'])
shutil.copy(
os.path.join(images_path, image_description['file_name']),
os.path.join(args.output, 'train', new_filename)
)
image_description['file_name'] = new_filename
merged_annotations['images'].append(image_description)
current_image_id += 1
if (args.names is not None):
assert(len(args.names) == len(args.output_ids))
id_to_name = {x: y for x, y in zip(args.output_ids, args.names)}
for category in merged_annotations['categories']:
category['name'] = id_to_name[category['id']]
with open(os.path.join(args.output, 'annotations', 'train.json'), 'w') as f:
json.dump(merged_annotations, f)