-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHuffman.cpp
executable file
·258 lines (207 loc) · 5.96 KB
/
Huffman.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include <algorithm>
#include <iostream>
#include "FUF.h"
#include "Utils.h"
#include "Huffman.h"
#include "WaveReader.h"
struct sortPair {
bool operator () (const TreeNode* left, const TreeNode* right) {
return left->d.second < right->d.second;
}
};
vector<Data> countFrequency(int* data, int size) {
map<int, int> myMap;
vector<Data> frequencies;
for (int i = 0; i < size; i++) {
if (myMap.count(data[i])) {
myMap[data[i]]++;
}
else {
myMap[data[i]] = 1;
}
}
map<int, int>::iterator it;
for (it = myMap.begin(); it != myMap.end(); it++) {
frequencies.push_back(Data(it->first, it->second));
}
return frequencies;
}
void sortTreeNodes(vector<TreeNode*>& t) {
sort(t.begin(), t.end(), sortPair());
}
void reduce(vector<TreeNode*>& t) {
Data d;
// Add up the frequencies
d.second = t[0]->d.second + t[1]->d.second;
// Create the new node, with the branches
TreeNode* newNode = new TreeNode(d);
newNode->left = t[0];
newNode->right = t[1];
// Remove and add nodes from the list
t.erase(t.begin(), t.begin()+2);
t.push_back(newNode);
sortTreeNodes(t);
}
void Huffman::buildCodeTable(TreeNode* t, string code) {
if (t == NULL) return;
if (t->left == NULL && t->right == NULL) {
codeTable[t->d.first] = code;
}
buildCodeTable(t->left, code+"1");
buildCodeTable(t->right, code+"0");
}
string Huffman::getCodeFor(Element e) {
if (codeTable.size() == 0) {
buildCodeTable(tree);
}
return codeTable[e];
}
void Huffman::buildTree(vector<Data> frequencies) {
this->frequencies = frequencies;
vector<TreeNode*> treeNodes;
for (unsigned int i = 0; i < frequencies.size(); i++) {
treeNodes.push_back(new TreeNode(frequencies[i]));
}
//Inserir a árvore dentro do arquivo
// Ordenados!
sortTreeNodes(treeNodes);
// Now, reduce!
while (treeNodes.size() > 1) {
reduce(treeNodes);
}
tree = treeNodes[0];
}
void Huffman::huffmanize(int* samples, int size) {
lastByteBitCount = 0;
data.clear();
Byte* current = NULL;
lastByteBitCount = 8;
for (int i = 0; i < size; i++) {
string code = getCodeFor(samples[i]);
for (unsigned int c = 0; c < code.size(); c++) {
if (lastByteBitCount == 8) {
if (current != NULL) {
data.push_back(*current);
}
lastByteBitCount = 0;
current = new Byte(0x00);
}
if (code[c] == '0') {
*current <<= 1;
*current &= 0xfe;
}
else /* if (code[c] == '1') */ {
*current <<= 1;
*current |= 0x01;
}
lastByteBitCount++;
}
}
*current <<= 8-lastByteBitCount;
data.push_back(*current);
}
vector<int> Huffman::dehuffmanize() {
vector<int> result;
TreeNode* t = tree;
int size = data.size() - 1;
for (unsigned int i = 0; i <= size; i++) {
Byte current = data[i];
for (unsigned int j = 0; (i < size && j < 8) || j < lastByteBitCount; j++) {
Byte byte = (0x80 & current) >> 7;
current <<= 1;
if (byte == 0) {
// Move right
t = t->right;
}
else /* byte == 1 */ {
// Move left
t = t->left;
}
if (t->left == NULL && t->right == NULL) {
// This is a leaf!
result.push_back(t->d.first);
// Reset the things
t = tree;
}
}
}
return result;
}
HuffmanHeader Huffman::getHeader() {
HuffmanHeader header;
header.byteCount = data.size();
header.lastByteBitCount = lastByteBitCount;
header.sampleCount = frequencies.size();
return header;
}
int* Huffman::getFrequencies() {
int size = frequencies.size()*2;
int* result = new int[size];
for (int i = 0, j = 0; j < size; i++) {
result[j] = frequencies[i].first;
j++;
result[j] = frequencies[i].second;
j++;
}
return result;
}
Byte* Huffman::getData() {
int size = data.size();
Byte* result = new Byte[size];
for (int i = 0; i < size; i++) {
result[i] = data[i];
}
return result;
}
void Huffman::readFile(FILE* file) {
HuffmanHeader header;
fread(&header, sizeof(HuffmanHeader), 1, file);
int size = header.sampleCount*2;
int* freq = new int[size];
fread(freq, sizeof(int), size, file);
for (int i = 0; i < size;) {
Data d;
d.first = freq[i];
i++;
d.second = freq[i];
i++;
frequencies.push_back(d);
}
delete[] freq;
size = header.byteCount;
Byte* bytes = new Byte[size];
fread(bytes, sizeof(Byte), size, file);
for (int i = 0; i < size; i++) {
data.push_back(bytes[i]);
}
delete[] bytes;
buildTree(frequencies);
lastByteBitCount = header.lastByteBitCount;
}
void FUF::huffmanCompress() {
// Node vector with frequencies
// Count the frequencies
int* samples = compressedData->getDataFromAllChannels();
int size = compressedData->getDataLength()*compressedData->getChannelCount();
vector<Data> frequencies = countFrequency(samples, size);
// Mapped!
// printFrequency(frequencies);
// Create the tree
compressedData->huff.buildTree(frequencies);
// Tree is built!
// printTree(tree[0], 1);
compressedData->huff.huffmanize(samples, size);
compressedData->hasHuffman = true;
}
void FUF::huffmanDecompress() {
vector<int> result = compressedData->huff.dehuffmanize();
int cn = compressedData->getChannelCount();
int dn = compressedData->getDataLength();
for (int c = 0, i = 0; c < cn; c++) {
int* receive = new int[dn];
for (int d = 0; d < dn; d++) {
receive[d] = result[i++];
}
compressedData->setData(c, receive, dn);
}
}