-
Notifications
You must be signed in to change notification settings - Fork 14
/
labelmatch_1_1_40k.log
3078 lines (3071 loc) · 999 KB
/
labelmatch_1_1_40k.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-11-06 10:02:30,612 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56) [GCC 7.2.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM2-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
PyTorch: 1.5.0+cu101
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_INTERNAL_THREADPOOL_IMPL -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.6.0+cu101
OpenCV: 4.5.1
MMCV: 1.2.7
MMCV Compiler: GCC 5.4
MMCV CUDA Compiler: 10.1
MMDetection: 2.10.0+unknown
------------------------------------------------------------
2021-11-06 10:02:33,544 - mmdet - INFO - Distributed training: True
2021-11-06 10:02:36,540 - mmdet - INFO - Config:
seed = 1
percent = 1
gpu = 8
score = 0.9
samples_per_gpu = 4
total_iter = 40000
update_interval = 1000
test_interval = 2000
save_interval = 10000
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
image_size = (1024, 1024)
pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AugmentationUT', use_re=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
pipeline_u_share = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomFlip', flip_ratio=0.5)
]
pipeline_u = [
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=[(1333, 500), (1333, 800)],
keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg', 'bbox_transform'))
]
pipeline_u_1 = [
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='AugmentationUT', use_re=True, use_box=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg', 'bbox_transform'))
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
dataset_type = 'CocoDataset'
data_root = './dataset/coco/'
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='SemiDataset',
ann_file=
'./dataset/coco/annotations/semi_supervised/instances_train2017.1@1.json',
ann_file_u=
'./dataset/coco/annotations/semi_supervised/instances_train2017.1@1-unlabeled.json',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AugmentationUT', use_re=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
],
pipeline_u_share=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RandomFlip', flip_ratio=0.5)
],
pipeline_u=[
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=[(1333, 500), (1333, 800)],
keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg', 'bbox_transform'))
],
pipeline_u_1=[
dict(type='AddBBoxTransform'),
dict(
type='ResizeBox',
img_scale=(1024, 1024),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='AugmentationUT', use_re=True, use_box=False),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg', 'bbox_transform'))
],
img_prefix='./dataset/coco/train2017/',
img_prefix_u='./dataset/coco/train2017/'),
val=dict(
type='CocoDataset',
ann_file='./dataset/coco/annotations/instances_val2017.json',
img_prefix='./dataset/coco/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoDataset',
ann_file='./dataset/coco/annotations/instances_val2017.json',
img_prefix='./dataset/coco/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=2000, metric='bbox', by_epoch=False, classwise=True)
learning_rate = 0.02
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[40000])
runner = dict(type='SemiIterBasedRunner', max_iters=40000)
checkpoint_config = dict(interval=10000)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
labelmatch_hook_cfg = dict(
samples_per_gpu=4,
workers_per_gpu=4,
label_file=
'./dataset/coco/annotations/semi_supervised/instances_train2017.1@1.json',
evaluation=dict(interval=1000, metric='bbox', by_epoch=False),
data=dict(
type='TXTDataset',
img_prefix='./dataset/coco/train2017/',
ann_file=
'./dataset/coco/annotations/semi_supervised_txt/instances_train2017.1@1-unlabeled.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
manual_length=10000))
custom_hooks = [
dict(type='NumClassCheckHook'),
dict(
type='LabelMatchHook',
cfg=dict(
samples_per_gpu=4,
workers_per_gpu=4,
label_file=
'./dataset/coco/annotations/semi_supervised/instances_train2017.1@1.json',
evaluation=dict(interval=1000, metric='bbox', by_epoch=False),
data=dict(
type='TXTDataset',
img_prefix='./dataset/coco/train2017/',
ann_file=
'./dataset/coco/annotations/semi_supervised_txt/instances_train2017.1@1-unlabeled.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
manual_length=10000)))
]
dist_params = dict(backend='nccl')
log_level = 'INFO'
resume_from = None
load_from = './pretrained_model/baseline/instances_train2017.1@1.pth'
workflow = [('train', 1)]
model = dict(
type='LabelMatch',
ema_config='./configs/baseline/baseline_base.py',
ema_ckpt='./pretrained_model/baseline/instances_train2017.1@1.pth',
cfg=dict(debug=False),
pretrained='./pretrained_model/backbone/resnet50-19c8e357.pth',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHeadLM',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHeadLM',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssignerLM',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_wrt_candidates=False,
ignore_iof_thr=0.5),
sampler=dict(
type='RandomSamplerLM',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
ig_weight=0.0,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.001,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
work_dir = './work_dirs/labelmatch_0.9_1_1_8'
gpu_ids = range(0, 8)
2021-11-06 10:02:36,864 - mmdet - INFO - load model from: ./pretrained_model/backbone/resnet50-19c8e357.pth
2021-11-06 10:02:36,865 - mmdet - INFO - Use load_from_local loader
2021-11-06 10:02:37,083 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2021-11-06 10:02:38,087 - mmdet - INFO - load model from: ./pretrained_model/backbone/resnet50-19c8e357.pth
2021-11-06 10:02:38,088 - mmdet - INFO - Use load_from_local loader
2021-11-06 10:02:38,288 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
2021-11-06 10:02:59,961 - mmdet - INFO - Loading 117113 images, cost 0.12347626686096191
2021-11-06 10:03:00,076 - mmdet - INFO - boxes per image (label data): 7.6022146507666095
2021-11-06 10:03:00,076 - mmdet - INFO - class ratio (label data): (0.3060-person) (0.0091-bicycle) (0.0478-car) (0.0089-motorcycle) (0.0039-airplane) (0.0063-bus) (0.0056-train) (0.0108-truck) (0.0131-boat) (0.0176-traffic light) (0.0021-fire hydrant) (0.0025-stop sign) (0.0018-parking meter) (0.0105-bench) (0.0092-bird) (0.0054-cat) (0.0053-dog) (0.0076-horse) (0.0057-sheep) (0.0119-cow) (0.0050-elephant) (0.0016-bear) (0.0080-zebra) (0.0068-giraffe) (0.0099-backpack) (0.0132-umbrella) (0.0157-handbag) (0.0072-tie) (0.0082-suitcase) (0.0031-frisbee) (0.0077-skis) (0.0024-snowboard) (0.0075-sports ball) (0.0120-kite) (0.0038-baseball bat) (0.0047-baseball glove) (0.0058-skateboard) (0.0067-surfboard) (0.0038-tennis racket) (0.0278-bottle) (0.0080-wine glass) (0.0283-cup) (0.0040-fork) (0.0106-knife) (0.0085-spoon) (0.0238-bowl) (0.0117-banana) (0.0087-apple) (0.0046-sandwich) (0.0038-orange) (0.0078-broccoli) (0.0092-carrot) (0.0011-hot dog) (0.0065-pizza) (0.0089-donut) (0.0066-cake) (0.0537-chair) (0.0063-couch) (0.0110-potted plant) (0.0046-bed) (0.0180-dining table) (0.0047-toilet) (0.0067-tv) (0.0050-laptop) (0.0016-mouse) (0.0058-remote) (0.0032-keyboard) (0.0085-cell phone) (0.0022-microwave) (0.0052-oven) (0.0002-toaster) (0.0067-sink) (0.0029-refrigerator) (0.0283-book) (0.0064-clock) (0.0067-vase) (0.0021-scissors) (0.0031-teddy bear) (0.0001-hair drier) (0.0027-toothbrush)
2021-11-06 10:03:00,076 - mmdet - INFO - load checkpoint from ./pretrained_model/baseline/instances_train2017.1@1.pth
2021-11-06 10:03:00,077 - mmdet - INFO - Use load_from_local loader
2021-11-06 10:03:00,932 - mmdet - INFO - Start running, host: root@train-hz-v100-0, work_dir: /data1/mmdet_ssod/work_dirs/labelmatch_0.9_1_1_8
2021-11-06 10:03:00,932 - mmdet - INFO - workflow: [('train', 1)], max: 40000 iters
2021-11-06 10:05:28,703 - mmdet - INFO - current percent: 0.2
2021-11-06 10:05:28,703 - mmdet - INFO - update score thr (positive): (1.00-person) (0.94-bicycle) (0.97-car) (0.96-motorcycle) (0.98-airplane) (0.97-bus) (0.98-train) (0.94-truck) (0.62-boat) (0.87-traffic light) (0.88-fire hydrant) (1.00-stop sign) (0.30-parking meter) (0.68-bench) (0.77-bird) (0.97-cat) (0.90-dog) (0.95-horse) (0.92-sheep) (0.87-cow) (1.00-elephant) (0.94-bear) (1.00-zebra) (1.00-giraffe) (0.62-backpack) (0.92-umbrella) (0.48-handbag) (0.70-tie) (0.65-suitcase) (0.95-frisbee) (0.73-skis) (0.45-snowboard) (0.97-sports ball) (0.96-kite) (0.90-baseball bat) (0.63-baseball glove) (0.88-skateboard) (0.83-surfboard) (0.99-tennis racket) (0.92-bottle) (0.83-wine glass) (0.89-cup) (0.19-fork) (0.36-knife) (0.24-spoon) (0.92-bowl) (0.81-banana) (0.53-apple) (0.57-sandwich) (0.95-orange) (0.89-broccoli) (0.79-carrot) (0.41-hot dog) (0.94-pizza) (0.58-donut) (0.54-cake) (0.61-chair) (0.82-couch) (0.81-potted plant) (0.93-bed) (0.89-dining table) (0.99-toilet) (0.98-tv) (0.93-laptop) (0.95-mouse) (0.55-remote) (0.96-keyboard) (0.73-cell phone) (0.87-microwave) (0.83-oven) (0.05-toaster) (0.86-sink) (0.74-refrigerator) (0.62-book) (1.00-clock) (0.82-vase) (0.59-scissors) (0.94-teddy bear) (0.05-hair drier) (0.18-toothbrush)
2021-11-06 10:05:28,704 - mmdet - INFO - update score thr (ignore): (0.46-person) (0.31-bicycle) (0.25-car) (0.36-motorcycle) (0.67-airplane) (0.42-bus) (0.31-train) (0.48-truck) (0.12-boat) (0.14-traffic light) (0.36-fire hydrant) (0.41-stop sign) (0.11-parking meter) (0.17-bench) (0.17-bird) (0.38-cat) (0.46-dog) (0.32-horse) (0.39-sheep) (0.25-cow) (0.64-elephant) (0.48-bear) (0.13-zebra) (0.26-giraffe) (0.18-backpack) (0.25-umbrella) (0.16-handbag) (0.08-tie) (0.16-suitcase) (0.22-frisbee) (0.21-skis) (0.21-snowboard) (0.11-sports ball) (0.26-kite) (0.22-baseball bat) (0.11-baseball glove) (0.25-skateboard) (0.21-surfboard) (0.12-tennis racket) (0.16-bottle) (0.12-wine glass) (0.10-cup) (0.05-fork) (0.09-knife) (0.06-spoon) (0.20-bowl) (0.21-banana) (0.13-apple) (0.23-sandwich) (0.63-orange) (0.12-broccoli) (0.12-carrot) (0.27-hot dog) (0.40-pizza) (0.10-donut) (0.15-cake) (0.10-chair) (0.38-couch) (0.15-potted plant) (0.53-bed) (0.41-dining table) (0.52-toilet) (0.39-tv) (0.25-laptop) (0.34-mouse) (0.11-remote) (0.32-keyboard) (0.14-cell phone) (0.33-microwave) (0.33-oven) (0.05-toaster) (0.22-sink) (0.30-refrigerator) (0.23-book) (0.29-clock) (0.26-vase) (0.12-scissors) (0.44-teddy bear) (0.05-hair drier) (0.06-toothbrush)
2021-11-06 10:06:53,372 - mmdet - INFO - Iter [50/40000] lr: 1.978e-03, eta: 1 day, 13:29:45, time: 3.379, data_time: 0.022, memory: 25205, loss_rpn_cls: 0.0561, loss_rpn_bbox: 0.0563, loss_cls: 0.2413, acc: 92.3962, loss_bbox: 0.2863, loss_rpn_cls_unlabeled: 0.2926, loss_rpn_bbox_unlabeled: 0.1379, loss_cls_unlabeled: 0.2746, acc_unlabeled: 90.3475, loss_bbox_unlabeled: 0.1740, losses_cls_ig_unlabeled: 0.1843, pseudo_num: 1.5418, pseudo_num_ig: 6.0568, pseudo_num_mining: 0.3633, pseudo_num(acc): 0.7342, pseudo_num ig(acc): 0.3297, loss: 1.7034
2021-11-06 10:08:17,590 - mmdet - INFO - Iter [100/40000] lr: 3.976e-03, eta: 1 day, 4:02:33, time: 1.681, data_time: 0.028, memory: 25205, loss_rpn_cls: 0.0364, loss_rpn_bbox: 0.0542, loss_cls: 0.2161, acc: 92.6062, loss_bbox: 0.2848, loss_rpn_cls_unlabeled: 0.1599, loss_rpn_bbox_unlabeled: 0.1323, loss_cls_unlabeled: 0.2514, acc_unlabeled: 90.0737, loss_bbox_unlabeled: 0.1839, losses_cls_ig_unlabeled: 0.1703, pseudo_num: 1.5271, pseudo_num_ig: 6.2707, pseudo_num_mining: 0.3876, pseudo_num(acc): 0.7076, pseudo_num ig(acc): 0.3199, loss: 1.4893
2021-11-06 10:09:42,821 - mmdet - INFO - Iter [150/40000] lr: 5.974e-03, eta: 1 day, 0:57:38, time: 1.704, data_time: 0.029, memory: 25205, loss_rpn_cls: 0.0384, loss_rpn_bbox: 0.0546, loss_cls: 0.2218, acc: 92.3038, loss_bbox: 0.2960, loss_rpn_cls_unlabeled: 0.1554, loss_rpn_bbox_unlabeled: 0.1405, loss_cls_unlabeled: 0.2552, acc_unlabeled: 89.3837, loss_bbox_unlabeled: 0.1871, losses_cls_ig_unlabeled: 0.1779, pseudo_num: 1.5502, pseudo_num_ig: 6.5496, pseudo_num_mining: 0.3848, pseudo_num(acc): 0.6883, pseudo_num ig(acc): 0.3152, loss: 1.5270
2021-11-06 10:11:08,455 - mmdet - INFO - Iter [200/40000] lr: 7.972e-03, eta: 23:26:24, time: 1.716, data_time: 0.029, memory: 25205, loss_rpn_cls: 0.0373, loss_rpn_bbox: 0.0546, loss_cls: 0.2196, acc: 92.2850, loss_bbox: 0.2932, loss_rpn_cls_unlabeled: 0.1567, loss_rpn_bbox_unlabeled: 0.1464, loss_cls_unlabeled: 0.2593, acc_unlabeled: 88.7716, loss_bbox_unlabeled: 0.1931, losses_cls_ig_unlabeled: 0.1852, pseudo_num: 1.5626, pseudo_num_ig: 6.8144, pseudo_num_mining: 0.3848, pseudo_num(acc): 0.6763, pseudo_num ig(acc): 0.3111, loss: 1.5453
2021-11-06 10:12:34,453 - mmdet - INFO - Iter [250/40000] lr: 9.970e-03, eta: 22:31:34, time: 1.720, data_time: 0.026, memory: 25205, loss_rpn_cls: 0.0422, loss_rpn_bbox: 0.0575, loss_cls: 0.2298, acc: 92.0588, loss_bbox: 0.3025, loss_rpn_cls_unlabeled: 0.1737, loss_rpn_bbox_unlabeled: 0.1537, loss_cls_unlabeled: 0.2525, acc_unlabeled: 88.8264, loss_bbox_unlabeled: 0.1929, losses_cls_ig_unlabeled: 0.1854, pseudo_num: 1.5763, pseudo_num_ig: 7.0552, pseudo_num_mining: 0.3852, pseudo_num(acc): 0.6698, pseudo_num ig(acc): 0.3051, loss: 1.5901
2021-11-06 10:13:59,644 - mmdet - INFO - Iter [300/40000] lr: 1.197e-02, eta: 21:52:26, time: 1.701, data_time: 0.026, memory: 26180, loss_rpn_cls: 0.0398, loss_rpn_bbox: 0.0561, loss_cls: 0.2236, acc: 92.1494, loss_bbox: 0.2956, loss_rpn_cls_unlabeled: 0.1612, loss_rpn_bbox_unlabeled: 0.1580, loss_cls_unlabeled: 0.2557, acc_unlabeled: 88.1436, loss_bbox_unlabeled: 0.1878, losses_cls_ig_unlabeled: 0.1994, pseudo_num: 1.5725, pseudo_num_ig: 7.3013, pseudo_num_mining: 0.3938, pseudo_num(acc): 0.6650, pseudo_num ig(acc): 0.3017, loss: 1.5771
2021-11-06 10:15:24,533 - mmdet - INFO - Iter [350/40000] lr: 1.397e-02, eta: 21:24:07, time: 1.701, data_time: 0.029, memory: 26180, loss_rpn_cls: 0.0442, loss_rpn_bbox: 0.0601, loss_cls: 0.2488, acc: 91.5524, loss_bbox: 0.3061, loss_rpn_cls_unlabeled: 0.1736, loss_rpn_bbox_unlabeled: 0.1640, loss_cls_unlabeled: 0.2759, acc_unlabeled: 87.7656, loss_bbox_unlabeled: 0.2066, losses_cls_ig_unlabeled: 0.2038, pseudo_num: 1.5794, pseudo_num_ig: 7.5120, pseudo_num_mining: 0.4031, pseudo_num(acc): 0.6591, pseudo_num ig(acc): 0.2990, loss: 1.6830
2021-11-06 10:16:56,601 - mmdet - INFO - Iter [400/40000] lr: 1.596e-02, eta: 21:13:58, time: 1.840, data_time: 0.026, memory: 26180, loss_rpn_cls: 0.0429, loss_rpn_bbox: 0.0594, loss_cls: 0.2355, acc: 91.8535, loss_bbox: 0.3030, loss_rpn_cls_unlabeled: 0.1783, loss_rpn_bbox_unlabeled: 0.1723, loss_cls_unlabeled: 0.2683, acc_unlabeled: 87.8468, loss_bbox_unlabeled: 0.2036, losses_cls_ig_unlabeled: 0.1991, pseudo_num: 1.5851, pseudo_num_ig: 7.7057, pseudo_num_mining: 0.4101, pseudo_num(acc): 0.6541, pseudo_num ig(acc): 0.2972, loss: 1.6625
2021-11-06 10:18:21,838 - mmdet - INFO - Iter [450/40000] lr: 1.796e-02, eta: 20:55:56, time: 1.706, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0492, loss_rpn_bbox: 0.0606, loss_cls: 0.2642, acc: 91.3187, loss_bbox: 0.3141, loss_rpn_cls_unlabeled: 0.1790, loss_rpn_bbox_unlabeled: 0.1735, loss_cls_unlabeled: 0.2859, acc_unlabeled: 87.2322, loss_bbox_unlabeled: 0.2001, losses_cls_ig_unlabeled: 0.2159, pseudo_num: 1.5881, pseudo_num_ig: 7.8963, pseudo_num_mining: 0.4187, pseudo_num(acc): 0.6481, pseudo_num ig(acc): 0.2955, loss: 1.7423
2021-11-06 10:19:45,920 - mmdet - INFO - pseudo pos: 0.98(540.0-person) 0.68(19.0-bicycle) 0.90(126.0-car) 0.79(24.0-motorcycle) 1.00(16.0-airplane) 0.95(20.0-bus) 1.00(15.0-train) 0.63(27.0-truck) 0.41(78.0-boat) 0.67(57.0-traffic light) 1.00(8.0-fire hydrant) 1.00(12.0-stop sign) 0.20(5.0-parking meter) 0.32(34.0-bench) 0.77(22.0-bird) 0.86(28.0-cat) 0.87(32.0-dog) 0.91(32.0-horse) 0.94(17.0-sheep) 0.54(67.0-cow) 1.00(8.0-elephant) 1.00(1.0-bear) 1.00(23.0-zebra) 1.00(21.0-giraffe) 0.31(32.0-backpack) 0.75(32.0-umbrella) 0.29(75.0-handbag) 0.58(55.0-tie) 0.35(23.0-suitcase) 0.86(7.0-frisbee) 0.31(36.0-skis) 0.33(3.0-snowboard) 1.00(25.0-sports ball) 0.64(33.0-kite) 0.75(12.0-baseball bat) 0.53(30.0-baseball glove) 0.67(18.0-skateboard) 0.77(30.0-surfboard) 0.91(11.0-tennis racket) 0.80(54.0-bottle) 0.56(16.0-wine glass) 0.68(103.0-cup) 0.15(33.0-fork) 0.14(58.0-knife) 0.07(30.0-spoon) 0.80(35.0-bowl) 0.38(42.0-banana) 0.48(48.0-apple) 0.49(45.0-sandwich) 0.83(6.0-orange) 0.48(31.0-broccoli) 0.47(34.0-carrot) 0.00(1.0-hot dog) 0.93(27.0-pizza) 0.19(36.0-donut) 0.39(31.0-cake) 0.38(291.0-chair) 0.48(42.0-couch) 0.44(48.0-potted plant) 0.69(16.0-bed) 0.73(63.0-dining table) 0.92(12.0-toilet) 0.75(20.0-tv) 0.79(28.0-laptop) 1.00(5.0-mouse) 0.46(28.0-remote) 0.82(11.0-keyboard) 0.53(32.0-cell phone) 1.00(7.0-microwave) 0.39(18.0-oven) 0.00(0.0-toaster) 0.73(30.0-sink) 0.47(17.0-refrigerator) 0.19(123.0-book) 1.00(13.0-clock) 0.67(39.0-vase) 0.00(0.0-scissors) 1.00(15.0-teddy bear) 0.00(0.0-hair drier) 0.12(8.0-toothbrush)
2021-11-06 10:19:45,921 - mmdet - INFO - pseudo ig: 0.59(3683.0-person) 0.26(81.0-bicycle) 0.33(757.0-car) 0.54(150.0-motorcycle) 0.61(38.0-airplane) 0.54(87.0-bus) 0.36(89.0-train) 0.32(114.0-truck) 0.11(349.0-boat) 0.14(366.0-traffic light) 0.40(15.0-fire hydrant) 0.36(44.0-stop sign) 0.09(23.0-parking meter) 0.10(181.0-bench) 0.28(123.0-bird) 0.49(82.0-cat) 0.51(65.0-dog) 0.27(108.0-horse) 0.49(81.0-sheep) 0.17(216.0-cow) 0.78(41.0-elephant) 0.46(13.0-bear) 0.30(115.0-zebra) 0.69(74.0-giraffe) 0.16(151.0-backpack) 0.26(171.0-umbrella) 0.07(299.0-handbag) 0.13(230.0-tie) 0.08(110.0-suitcase) 0.19(52.0-frisbee) 0.13(163.0-skis) 0.31(16.0-snowboard) 0.18(112.0-sports ball) 0.18(200.0-kite) 0.26(54.0-baseball bat) 0.08(144.0-baseball glove) 0.21(85.0-skateboard) 0.20(144.0-surfboard) 0.43(81.0-tennis racket) 0.23(474.0-bottle) 0.18(107.0-wine glass) 0.19(482.0-cup) 0.05(79.0-fork) 0.03(230.0-knife) 0.01(202.0-spoon) 0.16(312.0-bowl) 0.14(189.0-banana) 0.10(140.0-apple) 0.20(85.0-sandwich) 0.48(31.0-orange) 0.18(162.0-broccoli) 0.08(242.0-carrot) 0.00(5.0-hot dog) 0.36(73.0-pizza) 0.12(208.0-donut) 0.11(102.0-cake) 0.11(1457.0-chair) 0.19(95.0-couch) 0.14(277.0-potted plant) 0.38(76.0-bed) 0.23(243.0-dining table) 0.47(57.0-toilet) 0.41(112.0-tv) 0.38(101.0-laptop) 0.33(15.0-mouse) 0.15(115.0-remote) 0.42(45.0-keyboard) 0.18(150.0-cell phone) 0.23(26.0-microwave) 0.15(73.0-oven) 0.00(0.0-toaster) 0.24(126.0-sink) 0.18(71.0-refrigerator) 0.21(594.0-book) 0.51(81.0-clock) 0.28(93.0-vase) 0.07(27.0-scissors) 0.34(59.0-teddy bear) 0.00(0.0-hair drier) 0.03(37.0-toothbrush)
2021-11-06 10:19:45,921 - mmdet - INFO - pseudo gt: 4272.0 92.0 655.0 167.0 74.0 115.0 71.0 171.0 208.0 213.0 28.0 42.0 23.0 162.0 210.0 86.0 101.0 125.0 179.0 131.0 88.0 9.0 69.0 79.0 160.0 171.0 188.0 110.0 99.0 37.0 104.0 75.0 171.0 139.0 53.0 61.0 94.0 118.0 83.0 368.0 94.0 308.0 82.0 102.0 69.0 158.0 145.0 97.0 69.0 86.0 96.0 138.0 37.0 98.0 86.0 86.0 646.0 103.0 157.0 73.0 257.0 62.0 104.0 106.0 37.0 104.0 55.0 121.0 28.0 43.0 3.0 99.0 50.0 507.0 87.0 127.0 18.0 95.0 9.0 27.0
2021-11-06 10:19:45,921 - mmdet - INFO - pseudo mining: 648.0 0.0 21.0 2.0 1.0 1.0 2.0 1.0 0.0 6.0 0.0 5.0 0.0 0.0 0.0 3.0 0.0 0.0 2.0 1.0 11.0 0.0 7.0 8.0 0.0 7.0 0.0 1.0 0.0 0.0 0.0 0.0 4.0 10.0 0.0 0.0 0.0 0.0 4.0 10.0 0.0 3.0 0.0 0.0 0.0 2.0 1.0 0.0 0.0 3.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 3.0 11.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 14.0 0.0 0.0 0.0 0.0 0.0
2021-11-06 10:19:47,356 - mmdet - INFO - Iter [500/40000] lr: 1.996e-02, eta: 20:41:30, time: 1.710, data_time: 0.030, memory: 26180, loss_rpn_cls: 0.0492, loss_rpn_bbox: 0.0599, loss_cls: 0.2643, acc: 91.2589, loss_bbox: 0.3140, loss_rpn_cls_unlabeled: 0.1930, loss_rpn_bbox_unlabeled: 0.1870, loss_cls_unlabeled: 0.2882, acc_unlabeled: 87.2719, loss_bbox_unlabeled: 0.2099, losses_cls_ig_unlabeled: 0.2129, pseudo_num: 1.5913, pseudo_num_ig: 8.0863, pseudo_num_mining: 0.4282, pseudo_num(acc): 0.6419, pseudo_num ig(acc): 0.2933, loss: 1.7783
2021-11-06 10:21:12,465 - mmdet - INFO - Iter [550/40000] lr: 2.000e-02, eta: 20:28:49, time: 1.700, data_time: 0.027, memory: 26180, loss_rpn_cls: 0.0500, loss_rpn_bbox: 0.0617, loss_cls: 0.2674, acc: 91.1021, loss_bbox: 0.3219, loss_rpn_cls_unlabeled: 0.1854, loss_rpn_bbox_unlabeled: 0.1804, loss_cls_unlabeled: 0.2839, acc_unlabeled: 87.1071, loss_bbox_unlabeled: 0.2035, losses_cls_ig_unlabeled: 0.2161, pseudo_num: 1.5938, pseudo_num_ig: 8.2758, pseudo_num_mining: 0.4383, pseudo_num(acc): 0.6367, pseudo_num ig(acc): 0.2910, loss: 1.7704
2021-11-06 10:22:38,580 - mmdet - INFO - Iter [600/40000] lr: 2.000e-02, eta: 20:19:18, time: 1.723, data_time: 0.029, memory: 26180, loss_rpn_cls: 0.0489, loss_rpn_bbox: 0.0598, loss_cls: 0.2615, acc: 91.2939, loss_bbox: 0.3106, loss_rpn_cls_unlabeled: 0.1903, loss_rpn_bbox_unlabeled: 0.1941, loss_cls_unlabeled: 0.2900, acc_unlabeled: 86.7355, loss_bbox_unlabeled: 0.2142, losses_cls_ig_unlabeled: 0.2203, pseudo_num: 1.5998, pseudo_num_ig: 8.4871, pseudo_num_mining: 0.4477, pseudo_num(acc): 0.6300, pseudo_num ig(acc): 0.2881, loss: 1.7898
2021-11-06 10:24:05,697 - mmdet - INFO - Iter [650/40000] lr: 2.000e-02, eta: 20:11:56, time: 1.742, data_time: 0.029, memory: 26180, loss_rpn_cls: 0.0509, loss_rpn_bbox: 0.0603, loss_cls: 0.2633, acc: 91.2074, loss_bbox: 0.3130, loss_rpn_cls_unlabeled: 0.1922, loss_rpn_bbox_unlabeled: 0.1990, loss_cls_unlabeled: 0.3019, acc_unlabeled: 86.5161, loss_bbox_unlabeled: 0.2288, losses_cls_ig_unlabeled: 0.2202, pseudo_num: 1.6159, pseudo_num_ig: 8.6937, pseudo_num_mining: 0.4561, pseudo_num(acc): 0.6224, pseudo_num ig(acc): 0.2853, loss: 1.8295
2021-11-06 10:25:32,400 - mmdet - INFO - Iter [700/40000] lr: 2.000e-02, eta: 20:05:02, time: 1.733, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0503, loss_rpn_bbox: 0.0604, loss_cls: 0.2688, acc: 91.1622, loss_bbox: 0.3132, loss_rpn_cls_unlabeled: 0.2031, loss_rpn_bbox_unlabeled: 0.2037, loss_cls_unlabeled: 0.3132, acc_unlabeled: 86.2643, loss_bbox_unlabeled: 0.2362, losses_cls_ig_unlabeled: 0.2212, pseudo_num: 1.6326, pseudo_num_ig: 8.9173, pseudo_num_mining: 0.4648, pseudo_num(acc): 0.6149, pseudo_num ig(acc): 0.2815, loss: 1.8701
2021-11-06 10:27:00,093 - mmdet - INFO - Iter [750/40000] lr: 2.000e-02, eta: 19:59:39, time: 1.752, data_time: 0.030, memory: 26180, loss_rpn_cls: 0.0510, loss_rpn_bbox: 0.0609, loss_cls: 0.2647, acc: 91.1827, loss_bbox: 0.3139, loss_rpn_cls_unlabeled: 0.1912, loss_rpn_bbox_unlabeled: 0.2020, loss_cls_unlabeled: 0.3091, acc_unlabeled: 86.1565, loss_bbox_unlabeled: 0.2321, losses_cls_ig_unlabeled: 0.2276, pseudo_num: 1.6446, pseudo_num_ig: 9.1192, pseudo_num_mining: 0.4742, pseudo_num(acc): 0.6085, pseudo_num ig(acc): 0.2790, loss: 1.8525
2021-11-06 10:28:26,566 - mmdet - INFO - Iter [800/40000] lr: 2.000e-02, eta: 19:53:58, time: 1.732, data_time: 0.032, memory: 26180, loss_rpn_cls: 0.0520, loss_rpn_bbox: 0.0607, loss_cls: 0.2609, acc: 91.1575, loss_bbox: 0.3140, loss_rpn_cls_unlabeled: 0.1982, loss_rpn_bbox_unlabeled: 0.2109, loss_cls_unlabeled: 0.3009, acc_unlabeled: 85.8339, loss_bbox_unlabeled: 0.2323, losses_cls_ig_unlabeled: 0.2273, pseudo_num: 1.6519, pseudo_num_ig: 9.2953, pseudo_num_mining: 0.4813, pseudo_num(acc): 0.6029, pseudo_num ig(acc): 0.2767, loss: 1.8572
2021-11-06 10:29:51,967 - mmdet - INFO - Iter [850/40000] lr: 2.000e-02, eta: 19:47:53, time: 1.709, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0490, loss_rpn_bbox: 0.0600, loss_cls: 0.2511, acc: 91.4491, loss_bbox: 0.3111, loss_rpn_cls_unlabeled: 0.1940, loss_rpn_bbox_unlabeled: 0.2141, loss_cls_unlabeled: 0.3227, acc_unlabeled: 85.8561, loss_bbox_unlabeled: 0.2543, losses_cls_ig_unlabeled: 0.2155, pseudo_num: 1.6738, pseudo_num_ig: 9.4916, pseudo_num_mining: 0.4899, pseudo_num(acc): 0.5942, pseudo_num ig(acc): 0.2743, loss: 1.8719
2021-11-06 10:31:17,287 - mmdet - INFO - Iter [900/40000] lr: 2.000e-02, eta: 19:42:06, time: 1.703, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0489, loss_rpn_bbox: 0.0592, loss_cls: 0.2522, acc: 91.4119, loss_bbox: 0.3108, loss_rpn_cls_unlabeled: 0.1964, loss_rpn_bbox_unlabeled: 0.2068, loss_cls_unlabeled: 0.3135, acc_unlabeled: 86.1044, loss_bbox_unlabeled: 0.2523, losses_cls_ig_unlabeled: 0.2168, pseudo_num: 1.6946, pseudo_num_ig: 9.6632, pseudo_num_mining: 0.4970, pseudo_num(acc): 0.5875, pseudo_num ig(acc): 0.2716, loss: 1.8568
2021-11-06 10:32:42,501 - mmdet - INFO - Iter [950/40000] lr: 2.000e-02, eta: 19:36:58, time: 1.708, data_time: 0.031, memory: 26180, loss_rpn_cls: 0.0505, loss_rpn_bbox: 0.0595, loss_cls: 0.2577, acc: 91.2156, loss_bbox: 0.3149, loss_rpn_cls_unlabeled: 0.1928, loss_rpn_bbox_unlabeled: 0.2045, loss_cls_unlabeled: 0.3135, acc_unlabeled: 86.1781, loss_bbox_unlabeled: 0.2519, losses_cls_ig_unlabeled: 0.2185, pseudo_num: 1.7132, pseudo_num_ig: 9.7927, pseudo_num_mining: 0.5038, pseudo_num(acc): 0.5815, pseudo_num ig(acc): 0.2697, loss: 1.8638
2021-11-06 10:34:08,209 - mmdet - INFO - pseudo pos: 0.98(700.0-person) 0.81(53.0-bicycle) 0.91(295.0-car) 0.88(58.0-motorcycle) 1.00(29.0-airplane) 0.96(51.0-bus) 1.00(31.0-train) 0.66(59.0-truck) 0.41(171.0-boat) 0.71(129.0-traffic light) 1.00(22.0-fire hydrant) 1.00(21.0-stop sign) 0.36(14.0-parking meter) 0.30(99.0-bench) 0.70(54.0-bird) 0.87(56.0-cat) 0.86(50.0-dog) 0.90(59.0-horse) 0.90(49.0-sheep) 0.61(130.0-cow) 1.00(24.0-elephant) 1.00(1.0-bear) 1.00(26.0-zebra) 1.00(32.0-giraffe) 0.26(74.0-backpack) 0.71(99.0-umbrella) 0.33(155.0-handbag) 0.55(94.0-tie) 0.40(70.0-suitcase) 0.91(22.0-frisbee) 0.41(81.0-skis) 0.33(3.0-snowboard) 0.98(50.0-sports ball) 0.68(47.0-kite) 0.85(20.0-baseball bat) 0.34(96.0-baseball glove) 0.71(51.0-skateboard) 0.70(71.0-surfboard) 0.94(31.0-tennis racket) 0.80(112.0-bottle) 0.72(39.0-wine glass) 0.71(204.0-cup) 0.19(144.0-fork) 0.17(176.0-knife) 0.09(120.0-spoon) 0.82(98.0-bowl) 0.43(103.0-banana) 0.23(194.0-apple) 0.29(135.0-sandwich) 0.83(6.0-orange) 0.57(69.0-broccoli) 0.45(62.0-carrot) 0.00(1.0-hot dog) 0.85(52.0-pizza) 0.21(68.0-donut) 0.43(70.0-cake) 0.39(699.0-chair) 0.47(66.0-couch) 0.44(105.0-potted plant) 0.77(26.0-bed) 0.66(142.0-dining table) 0.95(21.0-toilet) 0.87(40.0-tv) 0.88(52.0-laptop) 1.00(7.0-mouse) 0.39(62.0-remote) 0.82(17.0-keyboard) 0.53(74.0-cell phone) 0.93(15.0-microwave) 0.49(45.0-oven) 0.00(0.0-toaster) 0.70(60.0-sink) 0.56(34.0-refrigerator) 0.17(275.0-book) 1.00(15.0-clock) 0.63(67.0-vase) 0.20(5.0-scissors) 0.98(42.0-teddy bear) 0.00(0.0-hair drier) 0.11(106.0-toothbrush)
2021-11-06 10:34:08,209 - mmdet - INFO - pseudo ig: 0.63(7925.0-person) 0.24(227.0-bicycle) 0.34(1865.0-car) 0.41(307.0-motorcycle) 0.60(82.0-airplane) 0.47(207.0-bus) 0.34(213.0-train) 0.34(267.0-truck) 0.13(780.0-boat) 0.11(1034.0-traffic light) 0.41(32.0-fire hydrant) 0.29(121.0-stop sign) 0.05(57.0-parking meter) 0.12(512.0-bench) 0.28(226.0-bird) 0.48(170.0-cat) 0.47(116.0-dog) 0.30(233.0-horse) 0.41(215.0-sheep) 0.16(532.0-cow) 0.69(118.0-elephant) 0.54(26.0-bear) 0.33(305.0-zebra) 0.64(182.0-giraffe) 0.15(379.0-backpack) 0.23(473.0-umbrella) 0.06(655.0-handbag) 0.10(621.0-tie) 0.10(288.0-suitcase) 0.19(157.0-frisbee) 0.14(379.0-skis) 0.28(18.0-snowboard) 0.16(314.0-sports ball) 0.19(408.0-kite) 0.21(129.0-baseball bat) 0.05(493.0-baseball glove) 0.21(243.0-skateboard) 0.22(294.0-surfboard) 0.35(244.0-tennis racket) 0.21(1056.0-bottle) 0.20(283.0-wine glass) 0.18(1273.0-cup) 0.06(417.0-fork) 0.04(755.0-knife) 0.03(658.0-spoon) 0.18(818.0-bowl) 0.13(472.0-banana) 0.04(572.0-apple) 0.13(273.0-sandwich) 0.54(41.0-orange) 0.18(548.0-broccoli) 0.09(693.0-carrot) 0.00(5.0-hot dog) 0.32(199.0-pizza) 0.10(548.0-donut) 0.12(258.0-cake) 0.11(3978.0-chair) 0.18(216.0-couch) 0.12(723.0-potted plant) 0.40(127.0-bed) 0.20(525.0-dining table) 0.51(114.0-toilet) 0.36(250.0-tv) 0.27(219.0-laptop) 0.34(29.0-mouse) 0.11(333.0-remote) 0.36(90.0-keyboard) 0.13(409.0-cell phone) 0.22(67.0-microwave) 0.12(186.0-oven) 0.00(0.0-toaster) 0.22(264.0-sink) 0.14(146.0-refrigerator) 0.16(1331.0-book) 0.44(265.0-clock) 0.26(210.0-vase) 0.08(71.0-scissors) 0.38(122.0-teddy bear) 0.00(0.0-hair drier) 0.04(219.0-toothbrush)
2021-11-06 10:34:08,209 - mmdet - INFO - pseudo gt: 8708.0 224.0 1494.0 291.0 171.0 212.0 142.0 369.0 372.0 428.0 70.0 87.0 37.0 358.0 394.0 166.0 186.0 242.0 341.0 267.0 193.0 25.0 147.0 155.0 329.0 408.0 413.0 191.0 209.0 96.0 198.0 107.0 274.0 259.0 102.0 106.0 179.0 242.0 202.0 724.0 217.0 682.0 171.0 247.0 191.0 416.0 343.0 161.0 141.0 229.0 228.0 288.0 66.0 215.0 148.0 176.0 1343.0 188.0 308.0 147.0 506.0 116.0 213.0 187.0 69.0 200.0 92.0 232.0 52.0 95.0 4.0 185.0 84.0 941.0 207.0 211.0 42.0 223.0 12.0 66.0
2021-11-06 10:34:08,209 - mmdet - INFO - pseudo mining: 1535.0 1.0 75.0 8.0 7.0 4.0 4.0 2.0 0.0 8.0 0.0 21.0 0.0 0.0 0.0 6.0 0.0 0.0 3.0 1.0 30.0 0.0 24.0 29.0 0.0 12.0 0.0 2.0 0.0 2.0 0.0 0.0 10.0 18.0 3.0 0.0 0.0 0.0 14.0 22.0 2.0 5.0 0.0 0.0 0.0 14.0 1.0 0.0 0.0 4.0 2.0 1.0 0.0 3.0 0.0 0.0 0.0 0.0 1.0 1.0 6.0 10.0 23.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 65.0 0.0 0.0 0.0 0.0 0.0
2021-11-06 10:35:33,940 - mmdet - INFO - current percent: 0.2
2021-11-06 10:35:33,941 - mmdet - INFO - update score thr (positive): (0.98-person) (0.94-bicycle) (0.96-car) (0.97-motorcycle) (0.98-airplane) (0.98-bus) (0.98-train) (0.88-truck) (0.93-boat) (0.94-traffic light) (0.99-fire hydrant) (1.00-stop sign) (0.47-parking meter) (0.87-bench) (0.88-bird) (0.98-cat) (0.94-dog) (0.94-horse) (0.95-sheep) (0.90-cow) (0.99-elephant) (0.93-bear) (0.99-zebra) (0.99-giraffe) (0.75-backpack) (0.96-umbrella) (0.68-handbag) (0.91-tie) (0.80-suitcase) (0.95-frisbee) (0.93-skis) (0.16-snowboard) (0.97-sports ball) (0.96-kite) (0.87-baseball bat) (0.96-baseball glove) (0.97-skateboard) (0.93-surfboard) (0.99-tennis racket) (0.95-bottle) (0.91-wine glass) (0.93-cup) (0.76-fork) (0.60-knife) (0.58-spoon) (0.91-bowl) (0.88-banana) (0.92-apple) (0.93-sandwich) (0.36-orange) (0.92-broccoli) (0.86-carrot) (0.05-hot dog) (0.97-pizza) (0.79-donut) (0.67-cake) (0.86-chair) (0.90-couch) (0.91-potted plant) (0.86-bed) (0.89-dining table) (0.99-toilet) (0.97-tv) (0.97-laptop) (0.83-mouse) (0.75-remote) (0.91-keyboard) (0.86-cell phone) (0.90-microwave) (0.93-oven) (0.05-toaster) (0.96-sink) (0.92-refrigerator) (0.82-book) (0.99-clock) (0.93-vase) (0.56-scissors) (0.99-teddy bear) (0.05-hair drier) (0.79-toothbrush)
2021-11-06 10:35:33,942 - mmdet - INFO - update score thr (ignore): (0.41-person) (0.48-bicycle) (0.44-car) (0.50-motorcycle) (0.75-airplane) (0.59-bus) (0.61-train) (0.44-truck) (0.47-boat) (0.48-traffic light) (0.46-fire hydrant) (0.89-stop sign) (0.18-parking meter) (0.44-bench) (0.26-bird) (0.65-cat) (0.51-dog) (0.40-horse) (0.65-sheep) (0.51-cow) (0.71-elephant) (0.47-bear) (0.33-zebra) (0.47-giraffe) (0.37-backpack) (0.55-umbrella) (0.30-handbag) (0.46-tie) (0.31-suitcase) (0.49-frisbee) (0.61-skis) (0.07-snowboard) (0.35-sports ball) (0.49-kite) (0.37-baseball bat) (0.72-baseball glove) (0.56-skateboard) (0.48-surfboard) (0.63-tennis racket) (0.42-bottle) (0.33-wine glass) (0.36-cup) (0.43-fork) (0.31-knife) (0.27-spoon) (0.40-bowl) (0.41-banana) (0.74-apple) (0.72-sandwich) (0.19-orange) (0.55-broccoli) (0.47-carrot) (0.05-hot dog) (0.65-pizza) (0.38-donut) (0.28-cake) (0.43-chair) (0.59-couch) (0.45-potted plant) (0.43-bed) (0.46-dining table) (0.71-toilet) (0.63-tv) (0.58-laptop) (0.31-mouse) (0.35-remote) (0.36-keyboard) (0.41-cell phone) (0.53-microwave) (0.64-oven) (0.05-toaster) (0.56-sink) (0.63-refrigerator) (0.48-book) (0.81-clock) (0.46-vase) (0.17-scissors) (0.76-teddy bear) (0.05-hair drier) (0.49-toothbrush)
2021-11-06 10:35:34,207 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 10:35:34,208 - mmdet - INFO - Iter [1000/40000] lr: 2.000e-02, eta: 19:33:30, time: 1.748, data_time: 0.031, memory: 26180, loss_rpn_cls: 0.0531, loss_rpn_bbox: 0.0616, loss_cls: 0.2644, acc: 91.1600, loss_bbox: 0.3139, loss_rpn_cls_unlabeled: 0.1972, loss_rpn_bbox_unlabeled: 0.2119, loss_cls_unlabeled: 0.3278, acc_unlabeled: 85.7328, loss_bbox_unlabeled: 0.2563, losses_cls_ig_unlabeled: 0.2226, pseudo_num: 1.7365, pseudo_num_ig: 9.9437, pseudo_num_mining: 0.5088, pseudo_num(acc): 0.5745, pseudo_num ig(acc): 0.2679, loss: 1.9089
2021-11-06 10:36:59,364 - mmdet - INFO - Iter [1050/40000] lr: 2.000e-02, eta: 20:20:58, time: 3.390, data_time: 1.717, memory: 26180, loss_rpn_cls: 0.0431, loss_rpn_bbox: 0.0573, loss_cls: 0.2411, acc: 91.6292, loss_bbox: 0.3059, loss_rpn_cls_unlabeled: 0.1261, loss_rpn_bbox_unlabeled: 0.1156, loss_cls_unlabeled: 0.2272, acc_unlabeled: 90.1559, loss_bbox_unlabeled: 0.1921, losses_cls_ig_unlabeled: 0.2054, pseudo_num: 1.7390, pseudo_num_ig: 9.8941, pseudo_num_mining: 0.5068, pseudo_num(acc): 0.5762, pseudo_num ig(acc): 0.2689, loss: 1.5139
2021-11-06 10:38:22,628 - mmdet - INFO - Iter [1100/40000] lr: 2.000e-02, eta: 20:13:03, time: 1.665, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0400, loss_rpn_bbox: 0.0555, loss_cls: 0.2352, acc: 91.7220, loss_bbox: 0.3065, loss_rpn_cls_unlabeled: 0.1156, loss_rpn_bbox_unlabeled: 0.1147, loss_cls_unlabeled: 0.2219, acc_unlabeled: 90.5724, loss_bbox_unlabeled: 0.1905, losses_cls_ig_unlabeled: 0.1940, pseudo_num: 1.7327, pseudo_num_ig: 9.6976, pseudo_num_mining: 0.4984, pseudo_num(acc): 0.5851, pseudo_num ig(acc): 0.2720, loss: 1.4738
2021-11-06 10:39:49,420 - mmdet - INFO - Iter [1150/40000] lr: 2.000e-02, eta: 20:07:41, time: 1.736, data_time: 0.030, memory: 26180, loss_rpn_cls: 0.0407, loss_rpn_bbox: 0.0598, loss_cls: 0.2348, acc: 91.6678, loss_bbox: 0.3147, loss_rpn_cls_unlabeled: 0.1117, loss_rpn_bbox_unlabeled: 0.1086, loss_cls_unlabeled: 0.2188, acc_unlabeled: 90.5428, loss_bbox_unlabeled: 0.1929, losses_cls_ig_unlabeled: 0.1928, pseudo_num: 1.7272, pseudo_num_ig: 9.5127, pseudo_num_mining: 0.4905, pseudo_num(acc): 0.5933, pseudo_num ig(acc): 0.2750, loss: 1.4748
2021-11-06 10:41:14,020 - mmdet - INFO - Iter [1200/40000] lr: 2.000e-02, eta: 20:01:20, time: 1.687, data_time: 0.027, memory: 26180, loss_rpn_cls: 0.0391, loss_rpn_bbox: 0.0576, loss_cls: 0.2280, acc: 91.8906, loss_bbox: 0.3072, loss_rpn_cls_unlabeled: 0.1109, loss_rpn_bbox_unlabeled: 0.1148, loss_cls_unlabeled: 0.2316, acc_unlabeled: 90.4845, loss_bbox_unlabeled: 0.2026, losses_cls_ig_unlabeled: 0.1902, pseudo_num: 1.7235, pseudo_num_ig: 9.3388, pseudo_num_mining: 0.4820, pseudo_num(acc): 0.6007, pseudo_num ig(acc): 0.2776, loss: 1.4820
2021-11-06 10:42:38,133 - mmdet - INFO - Iter [1250/40000] lr: 2.000e-02, eta: 19:55:22, time: 1.686, data_time: 0.030, memory: 26180, loss_rpn_cls: 0.0366, loss_rpn_bbox: 0.0541, loss_cls: 0.2178, acc: 92.2626, loss_bbox: 0.2923, loss_rpn_cls_unlabeled: 0.1093, loss_rpn_bbox_unlabeled: 0.1107, loss_cls_unlabeled: 0.2256, acc_unlabeled: 90.3959, loss_bbox_unlabeled: 0.2004, losses_cls_ig_unlabeled: 0.1938, pseudo_num: 1.7230, pseudo_num_ig: 9.1812, pseudo_num_mining: 0.4748, pseudo_num(acc): 0.6076, pseudo_num ig(acc): 0.2802, loss: 1.4405
2021-11-06 10:44:02,757 - mmdet - INFO - Iter [1300/40000] lr: 2.000e-02, eta: 19:49:54, time: 1.693, data_time: 0.028, memory: 26180, loss_rpn_cls: 0.0351, loss_rpn_bbox: 0.0575, loss_cls: 0.2191, acc: 92.2043, loss_bbox: 0.2962, loss_rpn_cls_unlabeled: 0.1057, loss_rpn_bbox_unlabeled: 0.1093, loss_cls_unlabeled: 0.2187, acc_unlabeled: 90.8313, loss_bbox_unlabeled: 0.1981, losses_cls_ig_unlabeled: 0.1789, pseudo_num: 1.7220, pseudo_num_ig: 9.0309, pseudo_num_mining: 0.4682, pseudo_num(acc): 0.6136, pseudo_num ig(acc): 0.2828, loss: 1.4186
2021-11-06 10:45:26,806 - mmdet - INFO - Iter [1350/40000] lr: 2.000e-02, eta: 19:44:27, time: 1.681, data_time: 0.032, memory: 26180, loss_rpn_cls: 0.0347, loss_rpn_bbox: 0.0540, loss_cls: 0.2073, acc: 92.5328, loss_bbox: 0.2895, loss_rpn_cls_unlabeled: 0.1083, loss_rpn_bbox_unlabeled: 0.1089, loss_cls_unlabeled: 0.2289, acc_unlabeled: 90.6084, loss_bbox_unlabeled: 0.2030, losses_cls_ig_unlabeled: 0.1821, pseudo_num: 1.7222, pseudo_num_ig: 8.8806, pseudo_num_mining: 0.4611, pseudo_num(acc): 0.6199, pseudo_num ig(acc): 0.2850, loss: 1.4167
2021-11-06 10:46:51,580 - mmdet - INFO - Iter [1400/40000] lr: 2.000e-02, eta: 19:39:35, time: 1.694, data_time: 0.027, memory: 26180, loss_rpn_cls: 0.0372, loss_rpn_bbox: 0.0547, loss_cls: 0.2209, acc: 92.1000, loss_bbox: 0.3036, loss_rpn_cls_unlabeled: 0.1185, loss_rpn_bbox_unlabeled: 0.1172, loss_cls_unlabeled: 0.2279, acc_unlabeled: 90.5249, loss_bbox_unlabeled: 0.2051, losses_cls_ig_unlabeled: 0.1824, pseudo_num: 1.7256, pseudo_num_ig: 8.7492, pseudo_num_mining: 0.4550, pseudo_num(acc): 0.6255, pseudo_num ig(acc): 0.2870, loss: 1.4675
2021-11-06 10:48:18,288 - mmdet - INFO - Iter [1450/40000] lr: 2.000e-02, eta: 19:35:50, time: 1.734, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0346, loss_rpn_bbox: 0.0546, loss_cls: 0.2084, acc: 92.4771, loss_bbox: 0.2887, loss_rpn_cls_unlabeled: 0.1096, loss_rpn_bbox_unlabeled: 0.1130, loss_cls_unlabeled: 0.2322, acc_unlabeled: 90.7996, loss_bbox_unlabeled: 0.2061, losses_cls_ig_unlabeled: 0.1717, pseudo_num: 1.7298, pseudo_num_ig: 8.6296, pseudo_num_mining: 0.4498, pseudo_num(acc): 0.6309, pseudo_num ig(acc): 0.2892, loss: 1.4189
2021-11-06 10:49:41,567 - mmdet - INFO - pseudo pos: 0.98(1766.0-person) 0.82(76.0-bicycle) 0.91(476.0-car) 0.90(97.0-motorcycle) 0.97(39.0-airplane) 0.97(77.0-bus) 1.00(53.0-train) 0.67(99.0-truck) 0.45(206.0-boat) 0.74(184.0-traffic light) 0.97(32.0-fire hydrant) 1.00(26.0-stop sign) 0.30(20.0-parking meter) 0.35(136.0-bench) 0.74(87.0-bird) 0.86(69.0-cat) 0.86(66.0-dog) 0.84(92.0-horse) 0.93(67.0-sheep) 0.63(156.0-cow) 1.00(31.0-elephant) 1.00(10.0-bear) 1.00(64.0-zebra) 1.00(54.0-giraffe) 0.32(114.0-backpack) 0.68(149.0-umbrella) 0.34(182.0-handbag) 0.59(111.0-tie) 0.43(104.0-suitcase) 0.88(26.0-frisbee) 0.42(86.0-skis) 0.13(45.0-snowboard) 0.95(74.0-sports ball) 0.73(73.0-kite) 0.73(41.0-baseball bat) 0.39(110.0-baseball glove) 0.76(67.0-skateboard) 0.72(85.0-surfboard) 0.96(46.0-tennis racket) 0.79(198.0-bottle) 0.77(69.0-wine glass) 0.72(287.0-cup) 0.20(155.0-fork) 0.19(206.0-knife) 0.10(138.0-spoon) 0.70(195.0-bowl) 0.47(174.0-banana) 0.24(203.0-apple) 0.31(143.0-sandwich) 0.29(65.0-orange) 0.65(96.0-broccoli) 0.40(86.0-carrot) 0.12(24.0-hot dog) 0.85(75.0-pizza) 0.36(110.0-donut) 0.41(93.0-cake) 0.42(859.0-chair) 0.48(90.0-couch) 0.54(145.0-potted plant) 0.75(55.0-bed) 0.65(219.0-dining table) 0.89(38.0-toilet) 0.88(66.0-tv) 0.88(74.0-laptop) 0.93(14.0-mouse) 0.37(75.0-remote) 0.81(43.0-keyboard) 0.53(112.0-cell phone) 0.92(24.0-microwave) 0.53(68.0-oven) 0.00(0.0-toaster) 0.74(76.0-sink) 0.60(42.0-refrigerator) 0.19(350.0-book) 0.89(38.0-clock) 0.67(85.0-vase) 0.14(7.0-scissors) 0.98(49.0-teddy bear) 0.00(0.0-hair drier) 0.11(106.0-toothbrush)
2021-11-06 10:49:41,567 - mmdet - INFO - pseudo ig: 0.61(11053.0-person) 0.27(330.0-bicycle) 0.36(2454.0-car) 0.42(433.0-motorcycle) 0.61(120.0-airplane) 0.50(259.0-bus) 0.35(260.0-train) 0.29(416.0-truck) 0.16(909.0-boat) 0.14(1215.0-traffic light) 0.49(63.0-fire hydrant) 0.34(143.0-stop sign) 0.06(79.0-parking meter) 0.12(667.0-bench) 0.30(306.0-bird) 0.54(239.0-cat) 0.54(186.0-dog) 0.35(330.0-horse) 0.46(275.0-sheep) 0.18(631.0-cow) 0.71(162.0-elephant) 0.45(47.0-bear) 0.40(417.0-zebra) 0.68(269.0-giraffe) 0.15(495.0-backpack) 0.25(562.0-umbrella) 0.07(773.0-handbag) 0.12(680.0-tie) 0.12(391.0-suitcase) 0.24(197.0-frisbee) 0.17(439.0-skis) 0.11(80.0-snowboard) 0.21(403.0-sports ball) 0.22(492.0-kite) 0.21(164.0-baseball bat) 0.06(530.0-baseball glove) 0.23(296.0-skateboard) 0.26(355.0-surfboard) 0.37(277.0-tennis racket) 0.24(1424.0-bottle) 0.25(380.0-wine glass) 0.20(1547.0-cup) 0.08(450.0-fork) 0.05(852.0-knife) 0.04(729.0-spoon) 0.19(1071.0-bowl) 0.15(672.0-banana) 0.05(621.0-apple) 0.15(291.0-sandwich) 0.23(130.0-orange) 0.20(620.0-broccoli) 0.10(762.0-carrot) 0.00(5.0-hot dog) 0.37(256.0-pizza) 0.13(669.0-donut) 0.12(341.0-cake) 0.12(4444.0-chair) 0.17(282.0-couch) 0.14(869.0-potted plant) 0.37(193.0-bed) 0.21(751.0-dining table) 0.55(169.0-toilet) 0.38(331.0-tv) 0.30(289.0-laptop) 0.32(65.0-mouse) 0.12(378.0-remote) 0.39(132.0-keyboard) 0.13(510.0-cell phone) 0.23(88.0-microwave) 0.15(236.0-oven) 0.00(0.0-toaster) 0.25(334.0-sink) 0.17(181.0-refrigerator) 0.16(1575.0-book) 0.48(334.0-clock) 0.26(281.0-vase) 0.07(80.0-scissors) 0.42(187.0-teddy bear) 0.00(0.0-hair drier) 0.04(220.0-toothbrush)
2021-11-06 10:49:41,567 - mmdet - INFO - pseudo gt: 12912.0 397.0 2254.0 467.0 264.0 333.0 216.0 525.0 557.0 648.0 101.0 123.0 47.0 573.0 515.0 247.0 285.0 354.0 515.0 388.0 264.0 52.0 280.0 253.0 481.0 588.0 639.0 291.0 346.0 132.0 299.0 146.0 418.0 358.0 160.0 157.0 257.0 326.0 283.0 1194.0 379.0 975.0 262.0 381.0 286.0 625.0 578.0 258.0 215.0 310.0 386.0 418.0 113.0 307.0 263.0 261.0 1969.0 261.0 444.0 224.0 753.0 185.0 308.0 272.0 115.0 305.0 152.0 350.0 82.0 151.0 8.0 286.0 122.0 1322.0 320.0 317.0 63.0 324.0 13.0 106.0
2021-11-06 10:49:41,567 - mmdet - INFO - pseudo mining: 1808.0 4.0 113.0 12.0 9.0 5.0 5.0 3.0 11.0 21.0 7.0 37.0 0.0 1.0 0.0 10.0 0.0 0.0 8.0 2.0 37.0 0.0 40.0 45.0 0.0 17.0 0.0 7.0 0.0 5.0 1.0 0.0 22.0 32.0 4.0 5.0 1.0 0.0 27.0 47.0 2.0 9.0 0.0 0.0 0.0 20.0 5.0 4.0 0.0 4.0 4.0 2.0 0.0 4.0 1.0 0.0 2.0 0.0 5.0 1.0 7.0 22.0 28.0 3.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 3.0 1.0 4.0 109.0 2.0 0.0 9.0 0.0 0.0
2021-11-06 10:49:42,999 - mmdet - INFO - Iter [1500/40000] lr: 2.000e-02, eta: 19:31:28, time: 1.697, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0335, loss_rpn_bbox: 0.0540, loss_cls: 0.2064, acc: 92.5170, loss_bbox: 0.2910, loss_rpn_cls_unlabeled: 0.1010, loss_rpn_bbox_unlabeled: 0.1055, loss_cls_unlabeled: 0.2313, acc_unlabeled: 90.9897, loss_bbox_unlabeled: 0.2119, losses_cls_ig_unlabeled: 0.1650, pseudo_num: 1.7346, pseudo_num_ig: 8.5074, pseudo_num_mining: 0.4439, pseudo_num(acc): 0.6347, pseudo_num ig(acc): 0.2911, loss: 1.3996
2021-11-06 10:51:06,879 - mmdet - INFO - Iter [1550/40000] lr: 2.000e-02, eta: 19:26:50, time: 1.675, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0371, loss_rpn_bbox: 0.0560, loss_cls: 0.2128, acc: 92.3798, loss_bbox: 0.2989, loss_rpn_cls_unlabeled: 0.1107, loss_rpn_bbox_unlabeled: 0.1072, loss_cls_unlabeled: 0.2410, acc_unlabeled: 90.6874, loss_bbox_unlabeled: 0.2208, losses_cls_ig_unlabeled: 0.1740, pseudo_num: 1.7405, pseudo_num_ig: 8.3868, pseudo_num_mining: 0.4379, pseudo_num(acc): 0.6386, pseudo_num ig(acc): 0.2928, loss: 1.4586
2021-11-06 10:52:29,751 - mmdet - INFO - Iter [1600/40000] lr: 2.000e-02, eta: 19:22:06, time: 1.660, data_time: 0.033, memory: 26488, loss_rpn_cls: 0.0364, loss_rpn_bbox: 0.0553, loss_cls: 0.2158, acc: 92.2992, loss_bbox: 0.2888, loss_rpn_cls_unlabeled: 0.1133, loss_rpn_bbox_unlabeled: 0.1139, loss_cls_unlabeled: 0.2480, acc_unlabeled: 90.5573, loss_bbox_unlabeled: 0.2264, losses_cls_ig_unlabeled: 0.1768, pseudo_num: 1.7485, pseudo_num_ig: 8.2847, pseudo_num_mining: 0.4330, pseudo_num(acc): 0.6411, pseudo_num ig(acc): 0.2944, loss: 1.4747
2021-11-06 10:53:54,058 - mmdet - INFO - Iter [1650/40000] lr: 2.000e-02, eta: 19:18:02, time: 1.683, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0330, loss_rpn_bbox: 0.0516, loss_cls: 0.1966, acc: 92.8870, loss_bbox: 0.2759, loss_rpn_cls_unlabeled: 0.1163, loss_rpn_bbox_unlabeled: 0.1206, loss_cls_unlabeled: 0.2583, acc_unlabeled: 90.8837, loss_bbox_unlabeled: 0.2456, losses_cls_ig_unlabeled: 0.1598, pseudo_num: 1.7630, pseudo_num_ig: 8.1917, pseudo_num_mining: 0.4294, pseudo_num(acc): 0.6422, pseudo_num ig(acc): 0.2962, loss: 1.4576
2021-11-06 10:55:18,316 - mmdet - INFO - Iter [1700/40000] lr: 2.000e-02, eta: 19:14:11, time: 1.687, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0356, loss_rpn_bbox: 0.0542, loss_cls: 0.2191, acc: 92.2554, loss_bbox: 0.2930, loss_rpn_cls_unlabeled: 0.1176, loss_rpn_bbox_unlabeled: 0.1163, loss_cls_unlabeled: 0.2844, acc_unlabeled: 90.5764, loss_bbox_unlabeled: 0.2525, losses_cls_ig_unlabeled: 0.1665, pseudo_num: 1.7811, pseudo_num_ig: 8.0974, pseudo_num_mining: 0.4256, pseudo_num(acc): 0.6409, pseudo_num ig(acc): 0.2976, loss: 1.5393
2021-11-06 10:56:42,841 - mmdet - INFO - Iter [1750/40000] lr: 2.000e-02, eta: 19:10:33, time: 1.691, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0357, loss_rpn_bbox: 0.0555, loss_cls: 0.2103, acc: 92.4624, loss_bbox: 0.2871, loss_rpn_cls_unlabeled: 0.1116, loss_rpn_bbox_unlabeled: 0.1190, loss_cls_unlabeled: 0.2858, acc_unlabeled: 90.5304, loss_bbox_unlabeled: 0.2679, losses_cls_ig_unlabeled: 0.1589, pseudo_num: 1.8000, pseudo_num_ig: 8.0034, pseudo_num_mining: 0.4218, pseudo_num(acc): 0.6388, pseudo_num ig(acc): 0.2991, loss: 1.5319
2021-11-06 10:58:06,286 - mmdet - INFO - Iter [1800/40000] lr: 2.000e-02, eta: 19:06:37, time: 1.668, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0354, loss_rpn_bbox: 0.0554, loss_cls: 0.2224, acc: 92.0692, loss_bbox: 0.2978, loss_rpn_cls_unlabeled: 0.1157, loss_rpn_bbox_unlabeled: 0.1311, loss_cls_unlabeled: 0.3016, acc_unlabeled: 90.0779, loss_bbox_unlabeled: 0.2980, losses_cls_ig_unlabeled: 0.1632, pseudo_num: 1.8262, pseudo_num_ig: 7.9210, pseudo_num_mining: 0.4182, pseudo_num(acc): 0.6349, pseudo_num ig(acc): 0.3006, loss: 1.6206
2021-11-06 10:59:31,069 - mmdet - INFO - Iter [1850/40000] lr: 2.000e-02, eta: 19:03:18, time: 1.695, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0363, loss_rpn_bbox: 0.0540, loss_cls: 0.2153, acc: 92.3397, loss_bbox: 0.2861, loss_rpn_cls_unlabeled: 0.1190, loss_rpn_bbox_unlabeled: 0.1331, loss_cls_unlabeled: 0.3215, acc_unlabeled: 89.9172, loss_bbox_unlabeled: 0.3222, losses_cls_ig_unlabeled: 0.1564, pseudo_num: 1.8619, pseudo_num_ig: 7.8438, pseudo_num_mining: 0.4147, pseudo_num(acc): 0.6279, pseudo_num ig(acc): 0.3020, loss: 1.6438
2021-11-06 11:00:55,347 - mmdet - INFO - Iter [1900/40000] lr: 2.000e-02, eta: 18:59:55, time: 1.686, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0361, loss_rpn_bbox: 0.0562, loss_cls: 0.2262, acc: 91.9375, loss_bbox: 0.2968, loss_rpn_cls_unlabeled: 0.1170, loss_rpn_bbox_unlabeled: 0.1309, loss_cls_unlabeled: 0.3205, acc_unlabeled: 90.1466, loss_bbox_unlabeled: 0.3173, losses_cls_ig_unlabeled: 0.1500, pseudo_num: 1.9013, pseudo_num_ig: 7.7649, pseudo_num_mining: 0.4108, pseudo_num(acc): 0.6193, pseudo_num ig(acc): 0.3030, loss: 1.6511
2021-11-06 11:02:18,881 - mmdet - INFO - Iter [1950/40000] lr: 2.000e-02, eta: 18:56:25, time: 1.672, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0372, loss_rpn_bbox: 0.0554, loss_cls: 0.2197, acc: 92.1849, loss_bbox: 0.2866, loss_rpn_cls_unlabeled: 0.1231, loss_rpn_bbox_unlabeled: 0.1407, loss_cls_unlabeled: 0.3402, acc_unlabeled: 89.7192, loss_bbox_unlabeled: 0.3406, losses_cls_ig_unlabeled: 0.1533, pseudo_num: 1.9431, pseudo_num_ig: 7.6959, pseudo_num_mining: 0.4071, pseudo_num(acc): 0.6106, pseudo_num ig(acc): 0.3043, loss: 1.6969
2021-11-06 11:03:40,573 - mmdet - INFO - pseudo pos: 0.98(3028.0-person) 0.82(106.0-bicycle) 0.90(678.0-car) 0.92(143.0-motorcycle) 0.96(49.0-airplane) 0.96(101.0-bus) 1.00(76.0-train) 0.61(136.0-truck) 0.49(243.0-boat) 0.75(213.0-traffic light) 0.97(37.0-fire hydrant) 1.00(36.0-stop sign) 0.33(39.0-parking meter) 0.39(157.0-bench) 0.78(122.0-bird) 0.89(87.0-cat) 0.83(83.0-dog) 0.83(124.0-horse) 0.94(78.0-sheep) 0.66(214.0-cow) 0.98(51.0-elephant) 1.00(17.0-bear) 0.98(101.0-zebra) 1.00(91.0-giraffe) 0.32(148.0-backpack) 0.67(184.0-umbrella) 0.34(223.0-handbag) 0.65(136.0-tie) 0.44(120.0-suitcase) 0.87(45.0-frisbee) 0.43(89.0-skis) 0.04(508.0-snowboard) 0.94(100.0-sports ball) 0.73(101.0-kite) 0.70(53.0-baseball bat) 0.42(123.0-baseball glove) 0.81(83.0-skateboard) 0.76(104.0-surfboard) 0.92(61.0-tennis racket) 0.80(292.0-bottle) 0.82(109.0-wine glass) 0.74(367.0-cup) 0.22(166.0-fork) 0.18(257.0-knife) 0.13(157.0-spoon) 0.66(279.0-bowl) 0.48(205.0-banana) 0.24(204.0-apple) 0.31(143.0-sandwich) 0.21(266.0-orange) 0.68(127.0-broccoli) 0.35(112.0-carrot) 0.03(1429.0-hot dog) 0.88(97.0-pizza) 0.43(124.0-donut) 0.42(114.0-cake) 0.45(1004.0-chair) 0.49(119.0-couch) 0.56(208.0-potted plant) 0.77(79.0-bed) 0.64(329.0-dining table) 0.91(57.0-toilet) 0.86(96.0-tv) 0.89(96.0-laptop) 0.90(21.0-mouse) 0.40(102.0-remote) 0.74(65.0-keyboard) 0.54(135.0-cell phone) 0.89(38.0-microwave) 0.55(101.0-oven) 0.00(0.0-toaster) 0.74(100.0-sink) 0.64(55.0-refrigerator) 0.21(423.0-book) 0.92(53.0-clock) 0.69(118.0-vase) 0.47(19.0-scissors) 0.97(59.0-teddy bear) 0.00(0.0-hair drier) 0.11(106.0-toothbrush)
2021-11-06 11:03:40,573 - mmdet - INFO - pseudo ig: 0.60(14327.0-person) 0.28(419.0-bicycle) 0.36(2986.0-car) 0.42(583.0-motorcycle) 0.62(151.0-airplane) 0.53(322.0-bus) 0.39(313.0-train) 0.29(528.0-truck) 0.20(1056.0-boat) 0.15(1360.0-traffic light) 0.57(93.0-fire hydrant) 0.37(167.0-stop sign) 0.08(114.0-parking meter) 0.13(746.0-bench) 0.29(402.0-bird) 0.58(295.0-cat) 0.56(225.0-dog) 0.33(416.0-horse) 0.46(304.0-sheep) 0.22(736.0-cow) 0.77(265.0-elephant) 0.43(58.0-bear) 0.42(470.0-zebra) 0.70(319.0-giraffe) 0.15(564.0-backpack) 0.26(649.0-umbrella) 0.09(913.0-handbag) 0.14(747.0-tie) 0.12(468.0-suitcase) 0.26(235.0-frisbee) 0.18(467.0-skis) 0.03(470.0-snowboard) 0.22(484.0-sports ball) 0.24(590.0-kite) 0.19(208.0-baseball bat) 0.07(556.0-baseball glove) 0.28(355.0-skateboard) 0.28(415.0-surfboard) 0.40(310.0-tennis racket) 0.25(1713.0-bottle) 0.29(462.0-wine glass) 0.21(1825.0-cup) 0.08(469.0-fork) 0.05(958.0-knife) 0.04(791.0-spoon) 0.20(1322.0-bowl) 0.16(781.0-banana) 0.06(648.0-apple) 0.16(299.0-sandwich) 0.13(309.0-orange) 0.21(680.0-broccoli) 0.11(863.0-carrot) 0.00(5.0-hot dog) 0.43(327.0-pizza) 0.14(746.0-donut) 0.12(390.0-cake) 0.14(4854.0-chair) 0.17(365.0-couch) 0.16(1001.0-potted plant) 0.35(279.0-bed) 0.21(967.0-dining table) 0.57(207.0-toilet) 0.37(399.0-tv) 0.34(345.0-laptop) 0.27(95.0-mouse) 0.12(450.0-remote) 0.36(179.0-keyboard) 0.15(590.0-cell phone) 0.24(116.0-microwave) 0.16(278.0-oven) 0.00(0.0-toaster) 0.27(380.0-sink) 0.19(200.0-refrigerator) 0.16(1758.0-book) 0.51(393.0-clock) 0.28(358.0-vase) 0.10(94.0-scissors) 0.46(221.0-teddy bear) 0.00(0.0-hair drier) 0.04(222.0-toothbrush)
2021-11-06 11:03:40,574 - mmdet - INFO - pseudo gt: 17422.0 540.0 3023.0 664.0 347.0 439.0 299.0 662.0 825.0 854.0 140.0 158.0 77.0 719.0 731.0 326.0 358.0 438.0 599.0 545.0 457.0 69.0 367.0 336.0 620.0 711.0 874.0 418.0 417.0 192.0 416.0 184.0 510.0 519.0 221.0 207.0 358.0 436.0 356.0 1543.0 538.0 1296.0 334.0 508.0 366.0 857.0 720.0 351.0 269.0 434.0 520.0 517.0 177.0 443.0 377.0 344.0 2670.0 362.0 597.0 293.0 1031.0 251.0 413.0 379.0 162.0 382.0 199.0 440.0 113.0 207.0 12.0 379.0 166.0 1690.0 425.0 452.0 95.0 399.0 16.0 131.0
2021-11-06 11:03:40,574 - mmdet - INFO - pseudo mining: 2137.0 7.0 142.0 15.0 11.0 8.0 8.0 3.0 14.0 28.0 16.0 48.0 0.0 1.0 0.0 14.0 0.0 1.0 10.0 3.0 74.0 0.0 46.0 57.0 0.0 21.0 0.0 8.0 0.0 8.0 1.0 0.0 35.0 47.0 4.0 9.0 4.0 1.0 33.0 58.0 4.0 14.0 0.0 0.0 0.0 24.0 6.0 6.0 0.0 4.0 6.0 4.0 0.0 7.0 1.0 0.0 2.0 1.0 10.0 1.0 9.0 32.0 34.0 4.0 1.0 1.0 2.0 1.0 3.0 0.0 0.0 4.0 1.0 8.0 146.0 4.0 0.0 12.0 0.0 0.0
2021-11-06 11:04:36,452 - mmdet - INFO - Evaluating bbox...
2021-11-06 11:05:45,467 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.335 | bicycle | 0.116 | car | 0.221 |
| motorcycle | 0.160 | airplane | 0.189 | bus | 0.314 |
| train | 0.271 | truck | 0.102 | boat | 0.062 |
| traffic light | 0.138 | fire hydrant | 0.217 | stop sign | 0.409 |
| parking meter | 0.157 | bench | 0.059 | bird | 0.097 |
| cat | 0.246 | dog | 0.186 | horse | 0.278 |
| sheep | 0.180 | cow | 0.150 | elephant | 0.325 |
| bear | 0.345 | zebra | 0.393 | giraffe | 0.406 |
| backpack | 0.024 | umbrella | 0.109 | handbag | 0.026 |
| tie | 0.091 | suitcase | 0.053 | frisbee | 0.285 |
| skis | 0.020 | snowboard | 0.015 | sports ball | 0.267 |
| kite | 0.170 | baseball bat | 0.074 | baseball glove | 0.163 |
| skateboard | 0.126 | surfboard | 0.080 | tennis racket | 0.200 |
| bottle | 0.162 | wine glass | 0.099 | cup | 0.183 |
| fork | 0.012 | knife | 0.018 | spoon | 0.013 |
| bowl | 0.177 | banana | 0.050 | apple | 0.056 |
| sandwich | 0.085 | orange | 0.107 | broccoli | 0.103 |
| carrot | 0.040 | hot dog | 0.005 | pizza | 0.231 |
| donut | 0.103 | cake | 0.044 | chair | 0.071 |
| couch | 0.090 | potted plant | 0.080 | bed | 0.131 |
| dining table | 0.073 | toilet | 0.220 | tv | 0.263 |
| laptop | 0.231 | mouse | 0.245 | remote | 0.038 |
| keyboard | 0.146 | cell phone | 0.119 | microwave | 0.252 |
| oven | 0.086 | toaster | 0.000 | sink | 0.126 |
| refrigerator | 0.147 | book | 0.019 | clock | 0.312 |
| vase | 0.143 | scissors | 0.044 | teddy bear | 0.132 |
| hair drier | 0.000 | toothbrush | 0.007 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 11:06:41,049 - mmdet - INFO - Evaluating bbox...
2021-11-06 11:07:51,297 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.365 | bicycle | 0.136 | car | 0.267 |
| motorcycle | 0.197 | airplane | 0.278 | bus | 0.359 |
| train | 0.296 | truck | 0.127 | boat | 0.089 |
| traffic light | 0.176 | fire hydrant | 0.362 | stop sign | 0.454 |
| parking meter | 0.200 | bench | 0.076 | bird | 0.137 |
| cat | 0.355 | dog | 0.292 | horse | 0.317 |
| sheep | 0.201 | cow | 0.225 | elephant | 0.347 |
| bear | 0.414 | zebra | 0.402 | giraffe | 0.447 |
| backpack | 0.039 | umbrella | 0.132 | handbag | 0.030 |
| tie | 0.121 | suitcase | 0.062 | frisbee | 0.322 |
| skis | 0.040 | snowboard | 0.024 | sports ball | 0.292 |
| kite | 0.197 | baseball bat | 0.087 | baseball glove | 0.187 |
| skateboard | 0.168 | surfboard | 0.105 | tennis racket | 0.213 |
| bottle | 0.198 | wine glass | 0.126 | cup | 0.226 |
| fork | 0.024 | knife | 0.025 | spoon | 0.016 |
| bowl | 0.232 | banana | 0.082 | apple | 0.064 |
| sandwich | 0.120 | orange | 0.150 | broccoli | 0.114 |
| carrot | 0.041 | hot dog | 0.012 | pizza | 0.277 |
| donut | 0.177 | cake | 0.059 | chair | 0.086 |
| couch | 0.105 | potted plant | 0.104 | bed | 0.176 |
| dining table | 0.099 | toilet | 0.305 | tv | 0.293 |
| laptop | 0.271 | mouse | 0.313 | remote | 0.057 |
| keyboard | 0.221 | cell phone | 0.139 | microwave | 0.263 |
| oven | 0.119 | toaster | 0.000 | sink | 0.147 |
| refrigerator | 0.182 | book | 0.027 | clock | 0.359 |
| vase | 0.186 | scissors | 0.050 | teddy bear | 0.192 |
| hair drier | 0.000 | toothbrush | 0.012 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 11:09:16,746 - mmdet - INFO - current percent: 0.2
2021-11-06 11:09:16,748 - mmdet - INFO - update score thr (positive): (0.99-person) (0.95-bicycle) (0.98-car) (0.98-motorcycle) (0.99-airplane) (0.99-bus) (0.99-train) (0.94-truck) (0.92-boat) (0.93-traffic light) (0.98-fire hydrant) (1.00-stop sign) (0.79-parking meter) (0.89-bench) (0.94-bird) (0.98-cat) (0.96-dog) (0.98-horse) (0.97-sheep) (0.95-cow) (0.99-elephant) (0.98-bear) (0.99-zebra) (0.99-giraffe) (0.85-backpack) (0.97-umbrella) (0.64-handbag) (0.92-tie) (0.92-suitcase) (0.98-frisbee) (0.58-skis) (0.93-snowboard) (0.98-sports ball) (0.98-kite) (0.98-baseball bat) (0.97-baseball glove) (0.96-skateboard) (0.92-surfboard) (0.99-tennis racket) (0.96-bottle) (0.95-wine glass) (0.95-cup) (0.82-fork) (0.77-knife) (0.64-spoon) (0.95-bowl) (0.90-banana) (0.41-apple) (0.37-sandwich) (0.94-orange) (0.96-broccoli) (0.76-carrot) (0.90-hot dog) (0.97-pizza) (0.76-donut) (0.69-cake) (0.86-chair) (0.91-couch) (0.95-potted plant) (0.95-bed) (0.93-dining table) (0.99-toilet) (0.98-tv) (0.99-laptop) (0.98-mouse) (0.87-remote) (0.98-keyboard) (0.97-cell phone) (0.96-microwave) (0.94-oven) (0.05-toaster) (0.97-sink) (0.91-refrigerator) (0.81-book) (0.99-clock) (0.95-vase) (0.70-scissors) (0.98-teddy bear) (0.05-hair drier) (0.37-toothbrush)
2021-11-06 11:09:16,748 - mmdet - INFO - update score thr (ignore): (0.40-person) (0.38-bicycle) (0.42-car) (0.49-motorcycle) (0.72-airplane) (0.41-bus) (0.47-train) (0.47-truck) (0.35-boat) (0.37-traffic light) (0.40-fire hydrant) (0.76-stop sign) (0.31-parking meter) (0.36-bench) (0.23-bird) (0.50-cat) (0.44-dog) (0.50-horse) (0.53-sheep) (0.51-cow) (0.58-elephant) (0.53-bear) (0.30-zebra) (0.26-giraffe) (0.38-backpack) (0.40-umbrella) (0.24-handbag) (0.36-tie) (0.36-suitcase) (0.49-frisbee) (0.20-skis) (0.85-snowboard) (0.36-sports ball) (0.47-kite) (0.57-baseball bat) (0.48-baseball glove) (0.43-skateboard) (0.33-surfboard) (0.43-tennis racket) (0.47-bottle) (0.27-wine glass) (0.34-cup) (0.27-fork) (0.35-knife) (0.23-spoon) (0.42-bowl) (0.37-banana) (0.14-apple) (0.16-sandwich) (0.85-orange) (0.61-broccoli) (0.34-carrot) (0.85-hot dog) (0.49-pizza) (0.29-donut) (0.25-cake) (0.30-chair) (0.53-couch) (0.52-potted plant) (0.52-bed) (0.48-dining table) (0.56-toilet) (0.62-tv) (0.56-laptop) (0.65-mouse) (0.44-remote) (0.63-keyboard) (0.52-cell phone) (0.48-microwave) (0.52-oven) (0.05-toaster) (0.41-sink) (0.52-refrigerator) (0.34-book) (0.58-clock) (0.45-vase) (0.21-scissors) (0.71-teddy bear) (0.05-hair drier) (0.12-toothbrush)
2021-11-06 11:09:17,053 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 11:09:17,053 - mmdet - INFO - Iter [2000/40000] lr: 2.000e-02, eta: 18:52:53, time: 1.663, data_time: 0.027, memory: 26488, bbox_mAP: 0.1770, bbox_mAP_50: 0.3420, bbox_mAP_75: 0.1660, bbox_mAP_s: 0.0880, bbox_mAP_m: 0.2040, bbox_mAP_l: 0.2290, bbox_mAP_copypaste: 0.177 0.342 0.166 0.088 0.204 0.229, loss_rpn_cls: 0.0368, loss_rpn_bbox: 0.0547, loss_cls: 0.2190, acc: 92.2046, loss_bbox: 0.2866, loss_rpn_cls_unlabeled: 0.1330, loss_rpn_bbox_unlabeled: 0.1495, loss_cls_unlabeled: 0.3611, acc_unlabeled: 89.6992, loss_bbox_unlabeled: 0.3575, losses_cls_ig_unlabeled: 0.1460, pseudo_num: 1.9972, pseudo_num_ig: 7.6308, pseudo_num_mining: 0.4043, pseudo_num(acc): 0.5989, pseudo_num ig(acc): 0.3053, loss: 1.7444
2021-11-06 11:10:42,104 - mmdet - INFO - Iter [2050/40000] lr: 2.000e-02, eta: 20:33:22, time: 8.399, data_time: 6.726, memory: 26488, loss_rpn_cls: 0.0347, loss_rpn_bbox: 0.0538, loss_cls: 0.1924, acc: 93.0458, loss_bbox: 0.2742, loss_rpn_cls_unlabeled: 0.1119, loss_rpn_bbox_unlabeled: 0.1076, loss_cls_unlabeled: 0.2002, acc_unlabeled: 91.0059, loss_bbox_unlabeled: 0.1793, losses_cls_ig_unlabeled: 0.1862, pseudo_num: 2.0199, pseudo_num_ig: 7.5734, pseudo_num_mining: 0.4040, pseudo_num(acc): 0.5942, pseudo_num ig(acc): 0.3065, loss: 1.3403
2021-11-06 11:12:05,093 - mmdet - INFO - Iter [2100/40000] lr: 2.000e-02, eta: 20:27:26, time: 1.663, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0318, loss_rpn_bbox: 0.0535, loss_cls: 0.1926, acc: 92.8645, loss_bbox: 0.2850, loss_rpn_cls_unlabeled: 0.1067, loss_rpn_bbox_unlabeled: 0.1116, loss_cls_unlabeled: 0.2012, acc_unlabeled: 90.6792, loss_bbox_unlabeled: 0.1853, losses_cls_ig_unlabeled: 0.1809, pseudo_num: 2.0086, pseudo_num_ig: 7.5262, pseudo_num_mining: 0.4059, pseudo_num(acc): 0.5981, pseudo_num ig(acc): 0.3080, loss: 1.3485
2021-11-06 11:13:27,642 - mmdet - INFO - Iter [2150/40000] lr: 2.000e-02, eta: 20:21:27, time: 1.647, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0321, loss_rpn_bbox: 0.0532, loss_cls: 0.1967, acc: 92.7535, loss_bbox: 0.2898, loss_rpn_cls_unlabeled: 0.1088, loss_rpn_bbox_unlabeled: 0.1067, loss_cls_unlabeled: 0.2043, acc_unlabeled: 90.6818, loss_bbox_unlabeled: 0.1895, losses_cls_ig_unlabeled: 0.1815, pseudo_num: 1.9991, pseudo_num_ig: 7.4809, pseudo_num_mining: 0.4064, pseudo_num(acc): 0.6017, pseudo_num ig(acc): 0.3094, loss: 1.3626
2021-11-06 11:14:51,618 - mmdet - INFO - Iter [2200/40000] lr: 2.000e-02, eta: 20:16:11, time: 1.680, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0306, loss_rpn_bbox: 0.0536, loss_cls: 0.1922, acc: 92.8713, loss_bbox: 0.2805, loss_rpn_cls_unlabeled: 0.1046, loss_rpn_bbox_unlabeled: 0.1066, loss_cls_unlabeled: 0.2070, acc_unlabeled: 90.7391, loss_bbox_unlabeled: 0.1937, losses_cls_ig_unlabeled: 0.1782, pseudo_num: 1.9901, pseudo_num_ig: 7.4374, pseudo_num_mining: 0.4077, pseudo_num(acc): 0.6049, pseudo_num ig(acc): 0.3108, loss: 1.3469
2021-11-06 11:16:15,644 - mmdet - INFO - Iter [2250/40000] lr: 2.000e-02, eta: 20:11:04, time: 1.680, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0306, loss_rpn_bbox: 0.0551, loss_cls: 0.1896, acc: 92.9902, loss_bbox: 0.2800, loss_rpn_cls_unlabeled: 0.1087, loss_rpn_bbox_unlabeled: 0.1072, loss_cls_unlabeled: 0.2120, acc_unlabeled: 90.8617, loss_bbox_unlabeled: 0.1917, losses_cls_ig_unlabeled: 0.1795, pseudo_num: 1.9837, pseudo_num_ig: 7.3971, pseudo_num_mining: 0.4088, pseudo_num(acc): 0.6082, pseudo_num ig(acc): 0.3123, loss: 1.3544
2021-11-06 11:17:41,559 - mmdet - INFO - Iter [2300/40000] lr: 2.000e-02, eta: 20:06:42, time: 1.722, data_time: 0.036, memory: 26488, loss_rpn_cls: 0.0310, loss_rpn_bbox: 0.0527, loss_cls: 0.1873, acc: 93.0581, loss_bbox: 0.2794, loss_rpn_cls_unlabeled: 0.1050, loss_rpn_bbox_unlabeled: 0.1099, loss_cls_unlabeled: 0.2157, acc_unlabeled: 90.4266, loss_bbox_unlabeled: 0.2024, losses_cls_ig_unlabeled: 0.1803, pseudo_num: 1.9767, pseudo_num_ig: 7.3560, pseudo_num_mining: 0.4088, pseudo_num(acc): 0.6111, pseudo_num ig(acc): 0.3136, loss: 1.3639
2021-11-06 11:19:05,781 - mmdet - INFO - Iter [2350/40000] lr: 2.000e-02, eta: 20:01:56, time: 1.684, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0318, loss_rpn_bbox: 0.0568, loss_cls: 0.1903, acc: 92.9164, loss_bbox: 0.2802, loss_rpn_cls_unlabeled: 0.1030, loss_rpn_bbox_unlabeled: 0.1093, loss_cls_unlabeled: 0.2068, acc_unlabeled: 90.8903, loss_bbox_unlabeled: 0.1910, losses_cls_ig_unlabeled: 0.1697, pseudo_num: 1.9703, pseudo_num_ig: 7.3169, pseudo_num_mining: 0.4085, pseudo_num(acc): 0.6141, pseudo_num ig(acc): 0.3147, loss: 1.3388
2021-11-06 11:20:31,591 - mmdet - INFO - Iter [2400/40000] lr: 2.000e-02, eta: 19:57:41, time: 1.713, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0301, loss_rpn_bbox: 0.0516, loss_cls: 0.1888, acc: 93.0042, loss_bbox: 0.2782, loss_rpn_cls_unlabeled: 0.1024, loss_rpn_bbox_unlabeled: 0.1121, loss_cls_unlabeled: 0.2225, acc_unlabeled: 90.5508, loss_bbox_unlabeled: 0.2106, losses_cls_ig_unlabeled: 0.1712, pseudo_num: 1.9656, pseudo_num_ig: 7.2788, pseudo_num_mining: 0.4086, pseudo_num(acc): 0.6166, pseudo_num ig(acc): 0.3158, loss: 1.3673
2021-11-06 11:21:57,342 - mmdet - INFO - Iter [2450/40000] lr: 2.000e-02, eta: 19:53:38, time: 1.718, data_time: 0.033, memory: 26488, loss_rpn_cls: 0.0309, loss_rpn_bbox: 0.0551, loss_cls: 0.1936, acc: 92.8210, loss_bbox: 0.2874, loss_rpn_cls_unlabeled: 0.1045, loss_rpn_bbox_unlabeled: 0.1094, loss_cls_unlabeled: 0.2116, acc_unlabeled: 90.8445, loss_bbox_unlabeled: 0.2042, losses_cls_ig_unlabeled: 0.1699, pseudo_num: 1.9621, pseudo_num_ig: 7.2433, pseudo_num_mining: 0.4089, pseudo_num(acc): 0.6188, pseudo_num ig(acc): 0.3170, loss: 1.3666
2021-11-06 11:23:19,130 - mmdet - INFO - pseudo pos: 0.98(4079.0-person) 0.81(132.0-bicycle) 0.90(837.0-car) 0.92(165.0-motorcycle) 0.97(62.0-airplane) 0.97(124.0-bus) 0.98(99.0-train) 0.64(170.0-truck) 0.51(286.0-boat) 0.77(264.0-traffic light) 0.96(50.0-fire hydrant) 1.00(45.0-stop sign) 0.36(47.0-parking meter) 0.44(193.0-bench) 0.80(138.0-bird) 0.88(103.0-cat) 0.85(106.0-dog) 0.84(137.0-horse) 0.94(97.0-sheep) 0.68(238.0-cow) 0.97(64.0-elephant) 1.00(22.0-bear) 0.98(120.0-zebra) 1.00(118.0-giraffe) 0.32(170.0-backpack) 0.70(220.0-umbrella) 0.35(265.0-handbag) 0.67(161.0-tie) 0.49(144.0-suitcase) 0.86(51.0-frisbee) 0.40(134.0-skis) 0.04(512.0-snowboard) 0.95(112.0-sports ball) 0.75(142.0-kite) 0.72(68.0-baseball bat) 0.45(133.0-baseball glove) 0.83(99.0-skateboard) 0.78(125.0-surfboard) 0.91(66.0-tennis racket) 0.79(381.0-bottle) 0.80(128.0-wine glass) 0.75(480.0-cup) 0.23(179.0-fork) 0.18(297.0-knife) 0.15(176.0-spoon) 0.67(367.0-bowl) 0.49(219.0-banana) 0.26(311.0-apple) 0.31(232.0-sandwich) 0.23(277.0-orange) 0.69(135.0-broccoli) 0.36(158.0-carrot) 0.03(1429.0-hot dog) 0.89(122.0-pizza) 0.47(162.0-donut) 0.47(144.0-cake) 0.47(1166.0-chair) 0.47(134.0-couch) 0.57(244.0-potted plant) 0.78(90.0-bed) 0.64(408.0-dining table) 0.92(74.0-toilet) 0.88(121.0-tv) 0.89(113.0-laptop) 0.92(24.0-mouse) 0.43(126.0-remote) 0.74(77.0-keyboard) 0.56(147.0-cell phone) 0.91(46.0-microwave) 0.57(123.0-oven) 0.00(0.0-toaster) 0.76(124.0-sink) 0.65(63.0-refrigerator) 0.19(519.0-book) 0.94(82.0-clock) 0.70(138.0-vase) 0.54(26.0-scissors) 0.96(72.0-teddy bear) 0.00(0.0-hair drier) 0.14(115.0-toothbrush)
2021-11-06 11:23:19,131 - mmdet - INFO - pseudo ig: 0.59(17593.0-person) 0.28(524.0-bicycle) 0.38(3557.0-car) 0.44(692.0-motorcycle) 0.66(183.0-airplane) 0.53(415.0-bus) 0.41(377.0-train) 0.29(657.0-truck) 0.22(1206.0-boat) 0.16(1564.0-traffic light) 0.55(111.0-fire hydrant) 0.41(198.0-stop sign) 0.11(131.0-parking meter) 0.14(882.0-bench) 0.29(453.0-bird) 0.60(361.0-cat) 0.56(286.0-dog) 0.36(486.0-horse) 0.51(388.0-sheep) 0.23(866.0-cow) 0.77(291.0-elephant) 0.44(70.0-bear) 0.44(524.0-zebra) 0.70(380.0-giraffe) 0.15(669.0-backpack) 0.28(765.0-umbrella) 0.09(1069.0-handbag) 0.16(838.0-tie) 0.14(551.0-suitcase) 0.27(276.0-frisbee) 0.20(568.0-skis) 0.03(482.0-snowboard) 0.24(547.0-sports ball) 0.25(708.0-kite) 0.21(238.0-baseball bat) 0.10(617.0-baseball glove) 0.30(404.0-skateboard) 0.30(497.0-surfboard) 0.42(368.0-tennis racket) 0.26(1981.0-bottle) 0.30(533.0-wine glass) 0.22(2147.0-cup) 0.10(508.0-fork) 0.06(1088.0-knife) 0.04(896.0-spoon) 0.21(1580.0-bowl) 0.17(822.0-banana) 0.07(809.0-apple) 0.15(439.0-sandwich) 0.14(327.0-orange) 0.23(740.0-broccoli) 0.11(978.0-carrot) 0.00(7.0-hot dog) 0.45(393.0-pizza) 0.16(906.0-donut) 0.13(481.0-cake) 0.14(5545.0-chair) 0.18(429.0-couch) 0.17(1118.0-potted plant) 0.37(334.0-bed) 0.22(1195.0-dining table) 0.56(278.0-toilet) 0.40(486.0-tv) 0.35(405.0-laptop) 0.31(120.0-mouse) 0.13(518.0-remote) 0.39(218.0-keyboard) 0.17(706.0-cell phone) 0.28(139.0-microwave) 0.16(332.0-oven) 0.00(0.0-toaster) 0.29(465.0-sink) 0.21(228.0-refrigerator) 0.15(2170.0-book) 0.51(462.0-clock) 0.29(418.0-vase) 0.16(123.0-scissors) 0.49(273.0-teddy bear) 0.00(0.0-hair drier) 0.05(262.0-toothbrush)
2021-11-06 11:23:19,131 - mmdet - INFO - pseudo gt: 21798.0 614.0 3805.0 832.0 426.0 540.0 384.0 828.0 985.0 1054.0 172.0 202.0 89.0 915.0 853.0 410.0 474.0 525.0 796.0 689.0 534.0 89.0 431.0 409.0 748.0 900.0 1098.0 513.0 498.0 231.0 535.0 235.0 628.0 701.0 298.0 282.0 442.0 536.0 452.0 1912.0 730.0 1634.0 450.0 678.0 487.0 1114.0 804.0 449.0 342.0 509.0 656.0 621.0 237.0 545.0 557.0 477.0 3259.0 453.0 750.0 374.0 1272.0 329.0 521.0 459.0 210.0 486.0 258.0 575.0 143.0 256.0 13.0 469.0 211.0 2177.0 528.0 552.0 128.0 483.0 20.0 182.0
2021-11-06 11:23:19,131 - mmdet - INFO - pseudo mining: 2616.0 8.0 194.0 19.0 16.0 12.0 11.0 5.0 17.0 40.0 18.0 66.0 0.0 1.0 0.0 17.0 3.0 12.0 23.0 6.0 81.0 1.0 60.0 72.0 0.0 27.0 0.0 9.0 0.0 13.0 1.0 0.0 51.0 65.0 9.0 12.0 6.0 1.0 48.0 77.0 5.0 21.0 0.0 0.0 0.0 31.0 6.0 6.0 0.0 9.0 14.0 4.0 0.0 9.0 1.0 0.0 5.0 1.0 13.0 1.0 14.0 44.0 48.0 6.0 8.0 3.0 4.0 6.0 3.0 0.0 0.0 9.0 1.0 9.0 177.0 4.0 0.0 19.0 0.0 0.0
2021-11-06 11:23:20,700 - mmdet - INFO - Iter [2500/40000] lr: 2.000e-02, eta: 19:49:03, time: 1.668, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0286, loss_rpn_bbox: 0.0519, loss_cls: 0.1828, acc: 93.1255, loss_bbox: 0.2774, loss_rpn_cls_unlabeled: 0.1063, loss_rpn_bbox_unlabeled: 0.1093, loss_cls_unlabeled: 0.2172, acc_unlabeled: 90.6139, loss_bbox_unlabeled: 0.2071, losses_cls_ig_unlabeled: 0.1717, pseudo_num: 1.9593, pseudo_num_ig: 7.2068, pseudo_num_mining: 0.4087, pseudo_num(acc): 0.6208, pseudo_num ig(acc): 0.3178, loss: 1.3523
2021-11-06 11:24:44,833 - mmdet - INFO - Iter [2550/40000] lr: 2.000e-02, eta: 19:44:46, time: 1.681, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0305, loss_rpn_bbox: 0.0513, loss_cls: 0.1865, acc: 93.1134, loss_bbox: 0.2745, loss_rpn_cls_unlabeled: 0.1099, loss_rpn_bbox_unlabeled: 0.1151, loss_cls_unlabeled: 0.2348, acc_unlabeled: 90.6022, loss_bbox_unlabeled: 0.2185, losses_cls_ig_unlabeled: 0.1714, pseudo_num: 1.9591, pseudo_num_ig: 7.1768, pseudo_num_mining: 0.4097, pseudo_num(acc): 0.6228, pseudo_num ig(acc): 0.3188, loss: 1.3927
2021-11-06 11:26:09,101 - mmdet - INFO - Iter [2600/40000] lr: 2.000e-02, eta: 19:40:36, time: 1.682, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0285, loss_rpn_bbox: 0.0525, loss_cls: 0.1838, acc: 93.2257, loss_bbox: 0.2752, loss_rpn_cls_unlabeled: 0.1084, loss_rpn_bbox_unlabeled: 0.1101, loss_cls_unlabeled: 0.2161, acc_unlabeled: 91.1532, loss_bbox_unlabeled: 0.2097, losses_cls_ig_unlabeled: 0.1624, pseudo_num: 1.9585, pseudo_num_ig: 7.1451, pseudo_num_mining: 0.4099, pseudo_num(acc): 0.6249, pseudo_num ig(acc): 0.3197, loss: 1.3468
2021-11-06 11:27:32,810 - mmdet - INFO - Iter [2650/40000] lr: 2.000e-02, eta: 19:36:28, time: 1.677, data_time: 0.035, memory: 26488, loss_rpn_cls: 0.0293, loss_rpn_bbox: 0.0539, loss_cls: 0.1894, acc: 92.9459, loss_bbox: 0.2814, loss_rpn_cls_unlabeled: 0.1114, loss_rpn_bbox_unlabeled: 0.1131, loss_cls_unlabeled: 0.2291, acc_unlabeled: 90.6746, loss_bbox_unlabeled: 0.2223, losses_cls_ig_unlabeled: 0.1694, pseudo_num: 1.9582, pseudo_num_ig: 7.1124, pseudo_num_mining: 0.4096, pseudo_num(acc): 0.6267, pseudo_num ig(acc): 0.3205, loss: 1.3992
2021-11-06 11:28:55,686 - mmdet - INFO - Iter [2700/40000] lr: 2.000e-02, eta: 19:32:13, time: 1.658, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0294, loss_rpn_bbox: 0.0502, loss_cls: 0.1800, acc: 93.2914, loss_bbox: 0.2748, loss_rpn_cls_unlabeled: 0.1077, loss_rpn_bbox_unlabeled: 0.1145, loss_cls_unlabeled: 0.2257, acc_unlabeled: 90.5269, loss_bbox_unlabeled: 0.2130, losses_cls_ig_unlabeled: 0.1710, pseudo_num: 1.9578, pseudo_num_ig: 7.0837, pseudo_num_mining: 0.4095, pseudo_num(acc): 0.6282, pseudo_num ig(acc): 0.3212, loss: 1.3664
2021-11-06 11:30:20,790 - mmdet - INFO - Iter [2750/40000] lr: 2.000e-02, eta: 19:28:34, time: 1.701, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0309, loss_rpn_bbox: 0.0522, loss_cls: 0.1830, acc: 93.2253, loss_bbox: 0.2697, loss_rpn_cls_unlabeled: 0.1081, loss_rpn_bbox_unlabeled: 0.1156, loss_cls_unlabeled: 0.2363, acc_unlabeled: 90.5680, loss_bbox_unlabeled: 0.2219, losses_cls_ig_unlabeled: 0.1680, pseudo_num: 1.9575, pseudo_num_ig: 7.0540, pseudo_num_mining: 0.4092, pseudo_num(acc): 0.6295, pseudo_num ig(acc): 0.3220, loss: 1.3858
2021-11-06 11:31:45,017 - mmdet - INFO - Iter [2800/40000] lr: 2.000e-02, eta: 19:24:49, time: 1.686, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0289, loss_rpn_bbox: 0.0527, loss_cls: 0.1852, acc: 93.1523, loss_bbox: 0.2705, loss_rpn_cls_unlabeled: 0.1052, loss_rpn_bbox_unlabeled: 0.1105, loss_cls_unlabeled: 0.2350, acc_unlabeled: 90.7218, loss_bbox_unlabeled: 0.2204, losses_cls_ig_unlabeled: 0.1622, pseudo_num: 1.9600, pseudo_num_ig: 7.0303, pseudo_num_mining: 0.4096, pseudo_num(acc): 0.6301, pseudo_num ig(acc): 0.3227, loss: 1.3707
2021-11-06 11:33:08,161 - mmdet - INFO - Iter [2850/40000] lr: 2.000e-02, eta: 19:20:53, time: 1.661, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0284, loss_rpn_bbox: 0.0515, loss_cls: 0.1821, acc: 93.2515, loss_bbox: 0.2691, loss_rpn_cls_unlabeled: 0.1072, loss_rpn_bbox_unlabeled: 0.1123, loss_cls_unlabeled: 0.2385, acc_unlabeled: 90.6843, loss_bbox_unlabeled: 0.2285, losses_cls_ig_unlabeled: 0.1632, pseudo_num: 1.9634, pseudo_num_ig: 7.0057, pseudo_num_mining: 0.4095, pseudo_num(acc): 0.6305, pseudo_num ig(acc): 0.3233, loss: 1.3809
2021-11-06 11:34:32,216 - mmdet - INFO - Iter [2900/40000] lr: 2.000e-02, eta: 19:17:17, time: 1.684, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0284, loss_rpn_bbox: 0.0517, loss_cls: 0.1825, acc: 93.1089, loss_bbox: 0.2771, loss_rpn_cls_unlabeled: 0.1070, loss_rpn_bbox_unlabeled: 0.1168, loss_cls_unlabeled: 0.2362, acc_unlabeled: 90.5128, loss_bbox_unlabeled: 0.2312, losses_cls_ig_unlabeled: 0.1692, pseudo_num: 1.9653, pseudo_num_ig: 6.9821, pseudo_num_mining: 0.4098, pseudo_num(acc): 0.6315, pseudo_num ig(acc): 0.3240, loss: 1.4001
2021-11-06 11:35:55,489 - mmdet - INFO - Iter [2950/40000] lr: 2.000e-02, eta: 19:13:34, time: 1.666, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0263, loss_rpn_bbox: 0.0494, loss_cls: 0.1776, acc: 93.2906, loss_bbox: 0.2688, loss_rpn_cls_unlabeled: 0.1058, loss_rpn_bbox_unlabeled: 0.1122, loss_cls_unlabeled: 0.2411, acc_unlabeled: 90.6130, loss_bbox_unlabeled: 0.2319, losses_cls_ig_unlabeled: 0.1655, pseudo_num: 1.9678, pseudo_num_ig: 6.9585, pseudo_num_mining: 0.4097, pseudo_num(acc): 0.6322, pseudo_num ig(acc): 0.3246, loss: 1.3785
2021-11-06 11:37:20,180 - mmdet - INFO - pseudo pos: 0.98(5143.0-person) 0.82(163.0-bicycle) 0.90(1016.0-car) 0.93(193.0-motorcycle) 0.96(77.0-airplane) 0.97(147.0-bus) 0.98(121.0-train) 0.64(190.0-truck) 0.52(333.0-boat) 0.80(341.0-traffic light) 0.97(61.0-fire hydrant) 1.00(53.0-stop sign) 0.38(53.0-parking meter) 0.49(232.0-bench) 0.82(164.0-bird) 0.90(126.0-cat) 0.85(119.0-dog) 0.85(169.0-horse) 0.94(114.0-sheep) 0.68(277.0-cow) 0.98(84.0-elephant) 1.00(28.0-bear) 0.99(152.0-zebra) 0.99(147.0-giraffe) 0.34(196.0-backpack) 0.70(249.0-umbrella) 0.35(317.0-handbag) 0.69(183.0-tie) 0.49(180.0-suitcase) 0.88(59.0-frisbee) 0.36(207.0-skis) 0.04(512.0-snowboard) 0.95(131.0-sports ball) 0.72(187.0-kite) 0.73(78.0-baseball bat) 0.49(147.0-baseball glove) 0.85(121.0-skateboard) 0.76(152.0-surfboard) 0.91(81.0-tennis racket) 0.81(470.0-bottle) 0.81(162.0-wine glass) 0.75(586.0-cup) 0.23(186.0-fork) 0.19(333.0-knife) 0.17(206.0-spoon) 0.69(448.0-bowl) 0.50(239.0-banana) 0.18(529.0-apple) 0.18(572.0-sandwich) 0.23(277.0-orange) 0.69(151.0-broccoli) 0.40(201.0-carrot) 0.03(1429.0-hot dog) 0.90(143.0-pizza) 0.49(180.0-donut) 0.46(179.0-cake) 0.48(1353.0-chair) 0.52(166.0-couch) 0.57(273.0-potted plant) 0.80(107.0-bed) 0.63(498.0-dining table) 0.93(95.0-toilet) 0.86(146.0-tv) 0.90(134.0-laptop) 0.88(33.0-mouse) 0.43(138.0-remote) 0.74(84.0-keyboard) 0.59(175.0-cell phone) 0.90(52.0-microwave) 0.59(143.0-oven) 0.00(0.0-toaster) 0.74(147.0-sink) 0.67(69.0-refrigerator) 0.19(604.0-book) 0.94(104.0-clock) 0.72(149.0-vase) 0.57(37.0-scissors) 0.96(82.0-teddy bear) 0.00(0.0-hair drier) 0.12(131.0-toothbrush)
2021-11-06 11:37:20,181 - mmdet - INFO - pseudo ig: 0.59(20621.0-person) 0.28(617.0-bicycle) 0.39(4114.0-car) 0.46(769.0-motorcycle) 0.67(209.0-airplane) 0.52(508.0-bus) 0.43(439.0-train) 0.30(752.0-truck) 0.23(1337.0-boat) 0.18(1832.0-traffic light) 0.51(138.0-fire hydrant) 0.44(217.0-stop sign) 0.11(140.0-parking meter) 0.14(985.0-bench) 0.29(543.0-bird) 0.60(414.0-cat) 0.55(328.0-dog) 0.38(593.0-horse) 0.51(465.0-sheep) 0.24(964.0-cow) 0.77(337.0-elephant) 0.45(82.0-bear) 0.45(613.0-zebra) 0.70(482.0-giraffe) 0.16(787.0-backpack) 0.28(859.0-umbrella) 0.10(1250.0-handbag) 0.17(905.0-tie) 0.16(651.0-suitcase) 0.29(310.0-frisbee) 0.18(731.0-skis) 0.03(482.0-snowboard) 0.28(624.0-sports ball) 0.27(845.0-kite) 0.22(272.0-baseball bat) 0.12(673.0-baseball glove) 0.31(479.0-skateboard) 0.31(587.0-surfboard) 0.44(418.0-tennis racket) 0.27(2270.0-bottle) 0.31(608.0-wine glass) 0.22(2449.0-cup) 0.10(539.0-fork) 0.06(1196.0-knife) 0.05(995.0-spoon) 0.21(1832.0-bowl) 0.17(893.0-banana) 0.06(1094.0-apple) 0.11(732.0-sandwich) 0.14(329.0-orange) 0.24(791.0-broccoli) 0.12(1108.0-carrot) 0.00(7.0-hot dog) 0.45(486.0-pizza) 0.17(1009.0-donut) 0.13(577.0-cake) 0.15(6188.0-chair) 0.20(510.0-couch) 0.19(1238.0-potted plant) 0.38(391.0-bed) 0.24(1408.0-dining table) 0.56(331.0-toilet) 0.40(562.0-tv) 0.36(447.0-laptop) 0.34(132.0-mouse) 0.13(564.0-remote) 0.39(255.0-keyboard) 0.18(791.0-cell phone) 0.29(156.0-microwave) 0.16(379.0-oven) 0.00(0.0-toaster) 0.30(558.0-sink) 0.22(248.0-refrigerator) 0.14(2492.0-book) 0.50(545.0-clock) 0.29(472.0-vase) 0.16(139.0-scissors) 0.50(309.0-teddy bear) 0.00(0.0-hair drier) 0.04(327.0-toothbrush)
2021-11-06 11:37:20,181 - mmdet - INFO - pseudo gt: 25992.0 730.0 4594.0 972.0 516.0 652.0 467.0 1026.0 1176.0 1364.0 203.0 236.0 111.0 1087.0 1024.0 497.0 544.0 653.0 921.0 815.0 623.0 116.0 525.0 526.0 937.0 1033.0 1284.0 612.0 626.0 284.0 638.0 270.0 739.0 856.0 350.0 351.0 550.0 650.0 526.0 2307.0 874.0 1993.0 537.0 802.0 592.0 1336.0 908.0 529.0 400.0 622.0 735.0 760.0 272.0 648.0 661.0 585.0 3862.0 554.0 907.0 445.0 1516.0 414.0 632.0 540.0 265.0 583.0 309.0 707.0 168.0 309.0 21.0 571.0 243.0 2572.0 629.0 664.0 151.0 552.0 25.0 221.0
2021-11-06 11:37:20,181 - mmdet - INFO - pseudo mining: 3037.0 9.0 242.0 20.0 16.0 16.0 12.0 6.0 21.0 49.0 20.0 81.0 0.0 1.0 0.0 22.0 3.0 15.0 31.0 10.0 89.0 1.0 69.0 100.0 2.0 31.0 0.0 11.0 1.0 20.0 1.0 0.0 72.0 95.0 13.0 16.0 8.0 2.0 58.0 91.0 5.0 28.0 0.0 1.0 0.0 36.0 7.0 6.0 0.0 9.0 18.0 6.0 0.0 14.0 1.0 0.0 6.0 1.0 18.0 1.0 18.0 53.0 64.0 10.0 13.0 5.0 6.0 9.0 4.0 0.0 0.0 14.0 1.0 9.0 212.0 6.0 0.0 24.0 0.0 0.0
2021-11-06 11:38:47,865 - mmdet - INFO - current percent: 0.2
2021-11-06 11:38:47,867 - mmdet - INFO - update score thr (positive): (0.99-person) (0.97-bicycle) (0.99-car) (0.99-motorcycle) (0.99-airplane) (1.00-bus) (0.99-train) (0.93-truck) (0.97-boat) (0.96-traffic light) (1.00-fire hydrant) (1.00-stop sign) (0.79-parking meter) (0.90-bench) (0.95-bird) (0.99-cat) (0.97-dog) (0.99-horse) (0.99-sheep) (0.93-cow) (0.99-elephant) (0.98-bear) (0.99-zebra) (0.99-giraffe) (0.83-backpack) (0.98-umbrella) (0.72-handbag) (0.94-tie) (0.88-suitcase) (0.98-frisbee) (0.93-skis) (0.36-snowboard) (0.99-sports ball) (0.97-kite) (0.96-baseball bat) (0.97-baseball glove) (0.96-skateboard) (0.94-surfboard) (0.99-tennis racket) (0.97-bottle) (0.95-wine glass) (0.96-cup) (0.92-fork) (0.83-knife) (0.77-spoon) (0.96-bowl) (0.95-banana) (0.94-apple) (0.98-sandwich) (0.41-orange) (0.96-broccoli) (0.92-carrot) (0.05-hot dog) (0.97-pizza) (0.78-donut) (0.83-cake) (0.89-chair) (0.93-couch) (0.96-potted plant) (0.96-bed) (0.96-dining table) (1.00-toilet) (0.98-tv) (0.99-laptop) (0.99-mouse) (0.85-remote) (0.98-keyboard) (0.96-cell phone) (0.97-microwave) (0.93-oven) (0.05-toaster) (0.97-sink) (0.94-refrigerator) (0.84-book) (1.00-clock) (0.94-vase) (0.87-scissors) (0.99-teddy bear) (0.05-hair drier) (0.72-toothbrush)
2021-11-06 11:38:47,867 - mmdet - INFO - update score thr (ignore): (0.35-person) (0.35-bicycle) (0.43-car) (0.51-motorcycle) (0.64-airplane) (0.53-bus) (0.41-train) (0.38-truck) (0.44-boat) (0.41-traffic light) (0.46-fire hydrant) (0.78-stop sign) (0.21-parking meter) (0.34-bench) (0.16-bird) (0.45-cat) (0.41-dog) (0.40-horse) (0.77-sheep) (0.34-cow) (0.46-elephant) (0.37-bear) (0.17-zebra) (0.30-giraffe) (0.34-backpack) (0.44-umbrella) (0.26-handbag) (0.33-tie) (0.26-suitcase) (0.46-frisbee) (0.57-skis) (0.14-snowboard) (0.35-sports ball) (0.40-kite) (0.39-baseball bat) (0.45-baseball glove) (0.36-skateboard) (0.35-surfboard) (0.62-tennis racket) (0.41-bottle) (0.21-wine glass) (0.33-cup) (0.27-fork) (0.35-knife) (0.28-spoon) (0.41-bowl) (0.43-banana) (0.74-apple) (0.91-sandwich) (0.17-orange) (0.48-broccoli) (0.54-carrot) (0.05-hot dog) (0.46-pizza) (0.27-donut) (0.31-cake) (0.27-chair) (0.53-couch) (0.47-potted plant) (0.50-bed) (0.52-dining table) (0.59-toilet) (0.57-tv) (0.61-laptop) (0.72-mouse) (0.32-remote) (0.51-keyboard) (0.43-cell phone) (0.42-microwave) (0.49-oven) (0.05-toaster) (0.38-sink) (0.47-refrigerator) (0.34-book) (0.67-clock) (0.30-vase) (0.28-scissors) (0.77-teddy bear) (0.05-hair drier) (0.33-toothbrush)
2021-11-06 11:38:48,185 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 11:38:48,185 - mmdet - INFO - Iter [3000/40000] lr: 2.000e-02, eta: 19:10:32, time: 1.724, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0284, loss_rpn_bbox: 0.0531, loss_cls: 0.1803, acc: 93.2067, loss_bbox: 0.2734, loss_rpn_cls_unlabeled: 0.1087, loss_rpn_bbox_unlabeled: 0.1136, loss_cls_unlabeled: 0.2396, acc_unlabeled: 90.7915, loss_bbox_unlabeled: 0.2352, losses_cls_ig_unlabeled: 0.1639, pseudo_num: 1.9708, pseudo_num_ig: 6.9366, pseudo_num_mining: 0.4100, pseudo_num(acc): 0.6327, pseudo_num ig(acc): 0.3253, loss: 1.3961
2021-11-06 11:40:13,099 - mmdet - INFO - Iter [3050/40000] lr: 2.000e-02, eta: 19:24:43, time: 3.425, data_time: 1.757, memory: 26488, loss_rpn_cls: 0.0290, loss_rpn_bbox: 0.0520, loss_cls: 0.1788, acc: 93.3027, loss_bbox: 0.2711, loss_rpn_cls_unlabeled: 0.1031, loss_rpn_bbox_unlabeled: 0.1054, loss_cls_unlabeled: 0.1897, acc_unlabeled: 90.8472, loss_bbox_unlabeled: 0.1693, losses_cls_ig_unlabeled: 0.1840, pseudo_num: 1.9681, pseudo_num_ig: 6.9162, pseudo_num_mining: 0.4114, pseudo_num(acc): 0.6338, pseudo_num ig(acc): 0.3262, loss: 1.2823
2021-11-06 11:41:36,605 - mmdet - INFO - Iter [3100/40000] lr: 2.000e-02, eta: 19:20:58, time: 1.671, data_time: 0.036, memory: 26488, loss_rpn_cls: 0.0280, loss_rpn_bbox: 0.0523, loss_cls: 0.1713, acc: 93.5822, loss_bbox: 0.2646, loss_rpn_cls_unlabeled: 0.1084, loss_rpn_bbox_unlabeled: 0.1074, loss_cls_unlabeled: 0.1901, acc_unlabeled: 90.8008, loss_bbox_unlabeled: 0.1757, losses_cls_ig_unlabeled: 0.1769, pseudo_num: 1.9591, pseudo_num_ig: 6.8995, pseudo_num_mining: 0.4141, pseudo_num(acc): 0.6360, pseudo_num ig(acc): 0.3272, loss: 1.2749
2021-11-06 11:43:01,069 - mmdet - INFO - Iter [3150/40000] lr: 2.000e-02, eta: 19:17:29, time: 1.692, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0278, loss_rpn_bbox: 0.0503, loss_cls: 0.1714, acc: 93.5342, loss_bbox: 0.2654, loss_rpn_cls_unlabeled: 0.1058, loss_rpn_bbox_unlabeled: 0.1086, loss_cls_unlabeled: 0.1945, acc_unlabeled: 90.8547, loss_bbox_unlabeled: 0.1834, losses_cls_ig_unlabeled: 0.1790, pseudo_num: 1.9514, pseudo_num_ig: 6.8838, pseudo_num_mining: 0.4164, pseudo_num(acc): 0.6381, pseudo_num ig(acc): 0.3282, loss: 1.2862
2021-11-06 11:44:24,646 - mmdet - INFO - Iter [3200/40000] lr: 2.000e-02, eta: 19:13:50, time: 1.669, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0272, loss_rpn_bbox: 0.0511, loss_cls: 0.1668, acc: 93.6910, loss_bbox: 0.2610, loss_rpn_cls_unlabeled: 0.1005, loss_rpn_bbox_unlabeled: 0.1032, loss_cls_unlabeled: 0.1865, acc_unlabeled: 90.8862, loss_bbox_unlabeled: 0.1768, losses_cls_ig_unlabeled: 0.1759, pseudo_num: 1.9445, pseudo_num_ig: 6.8655, pseudo_num_mining: 0.4183, pseudo_num(acc): 0.6400, pseudo_num ig(acc): 0.3291, loss: 1.2489
2021-11-06 11:45:50,107 - mmdet - INFO - Iter [3250/40000] lr: 2.000e-02, eta: 19:10:40, time: 1.711, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0263, loss_rpn_bbox: 0.0507, loss_cls: 0.1618, acc: 93.8307, loss_bbox: 0.2610, loss_rpn_cls_unlabeled: 0.1039, loss_rpn_bbox_unlabeled: 0.1069, loss_cls_unlabeled: 0.1844, acc_unlabeled: 91.2986, loss_bbox_unlabeled: 0.1743, losses_cls_ig_unlabeled: 0.1664, pseudo_num: 1.9377, pseudo_num_ig: 6.8472, pseudo_num_mining: 0.4202, pseudo_num(acc): 0.6420, pseudo_num ig(acc): 0.3300, loss: 1.2356
2021-11-06 11:47:15,979 - mmdet - INFO - Iter [3300/40000] lr: 2.000e-02, eta: 19:07:36, time: 1.716, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0261, loss_rpn_bbox: 0.0498, loss_cls: 0.1582, acc: 93.9854, loss_bbox: 0.2516, loss_rpn_cls_unlabeled: 0.1005, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.1839, acc_unlabeled: 91.0201, loss_bbox_unlabeled: 0.1751, losses_cls_ig_unlabeled: 0.1725, pseudo_num: 1.9311, pseudo_num_ig: 6.8285, pseudo_num_mining: 0.4224, pseudo_num(acc): 0.6439, pseudo_num ig(acc): 0.3309, loss: 1.2241
2021-11-06 11:48:39,222 - mmdet - INFO - Iter [3350/40000] lr: 2.000e-02, eta: 19:04:06, time: 1.665, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0272, loss_rpn_bbox: 0.0496, loss_cls: 0.1605, acc: 93.9449, loss_bbox: 0.2552, loss_rpn_cls_unlabeled: 0.1017, loss_rpn_bbox_unlabeled: 0.1058, loss_cls_unlabeled: 0.2008, acc_unlabeled: 90.9290, loss_bbox_unlabeled: 0.1920, losses_cls_ig_unlabeled: 0.1711, pseudo_num: 1.9256, pseudo_num_ig: 6.8118, pseudo_num_mining: 0.4238, pseudo_num(acc): 0.6457, pseudo_num ig(acc): 0.3319, loss: 1.2639
2021-11-06 11:50:03,510 - mmdet - INFO - Iter [3400/40000] lr: 2.000e-02, eta: 19:00:51, time: 1.685, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0251, loss_rpn_bbox: 0.0481, loss_cls: 0.1641, acc: 93.8033, loss_bbox: 0.2611, loss_rpn_cls_unlabeled: 0.0984, loss_rpn_bbox_unlabeled: 0.1030, loss_cls_unlabeled: 0.1954, acc_unlabeled: 90.8909, loss_bbox_unlabeled: 0.1829, losses_cls_ig_unlabeled: 0.1738, pseudo_num: 1.9203, pseudo_num_ig: 6.7942, pseudo_num_mining: 0.4254, pseudo_num(acc): 0.6474, pseudo_num ig(acc): 0.3327, loss: 1.2517
2021-11-06 11:51:27,853 - mmdet - INFO - Iter [3450/40000] lr: 2.000e-02, eta: 18:57:42, time: 1.690, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0269, loss_rpn_bbox: 0.0504, loss_cls: 0.1630, acc: 93.8615, loss_bbox: 0.2588, loss_rpn_cls_unlabeled: 0.1029, loss_rpn_bbox_unlabeled: 0.1109, loss_cls_unlabeled: 0.2003, acc_unlabeled: 91.0195, loss_bbox_unlabeled: 0.1896, losses_cls_ig_unlabeled: 0.1697, pseudo_num: 1.9160, pseudo_num_ig: 6.7790, pseudo_num_mining: 0.4271, pseudo_num(acc): 0.6490, pseudo_num ig(acc): 0.3336, loss: 1.2725
2021-11-06 11:52:50,139 - mmdet - INFO - pseudo pos: 0.98(6172.0-person) 0.83(183.0-bicycle) 0.90(1157.0-car) 0.93(215.0-motorcycle) 0.97(90.0-airplane) 0.98(161.0-bus) 0.99(141.0-train) 0.64(226.0-truck) 0.53(348.0-boat) 0.81(394.0-traffic light) 0.97(65.0-fire hydrant) 1.00(65.0-stop sign) 0.39(57.0-parking meter) 0.47(273.0-bench) 0.82(202.0-bird) 0.91(141.0-cat) 0.85(143.0-dog) 0.87(196.0-horse) 0.95(136.0-sheep) 0.70(313.0-cow) 0.98(100.0-elephant) 1.00(33.0-bear) 0.98(174.0-zebra) 0.99(175.0-giraffe) 0.34(234.0-backpack) 0.72(276.0-umbrella) 0.36(377.0-handbag) 0.71(204.0-tie) 0.50(203.0-suitcase) 0.89(70.0-frisbee) 0.39(230.0-skis) 0.04(520.0-snowboard) 0.95(148.0-sports ball) 0.73(212.0-kite) 0.74(87.0-baseball bat) 0.54(163.0-baseball glove) 0.86(149.0-skateboard) 0.76(174.0-surfboard) 0.92(95.0-tennis racket) 0.82(553.0-bottle) 0.83(181.0-wine glass) 0.77(677.0-cup) 0.25(197.0-fork) 0.19(362.0-knife) 0.18(218.0-spoon) 0.68(529.0-bowl) 0.52(258.0-banana) 0.19(549.0-apple) 0.19(581.0-sandwich) 0.22(317.0-orange) 0.67(181.0-broccoli) 0.41(217.0-carrot) 0.04(1512.0-hot dog) 0.90(166.0-pizza) 0.51(238.0-donut) 0.47(192.0-cake) 0.49(1493.0-chair) 0.52(180.0-couch) 0.58(303.0-potted plant) 0.82(120.0-bed) 0.64(584.0-dining table) 0.91(104.0-toilet) 0.88(171.0-tv) 0.91(149.0-laptop) 0.90(39.0-mouse) 0.45(150.0-remote) 0.74(102.0-keyboard) 0.61(202.0-cell phone) 0.91(58.0-microwave) 0.61(156.0-oven) 0.00(0.0-toaster) 0.72(170.0-sink) 0.73(86.0-refrigerator) 0.20(693.0-book) 0.93(121.0-clock) 0.74(170.0-vase) 0.57(40.0-scissors) 0.96(92.0-teddy bear) 0.00(0.0-hair drier) 0.12(139.0-toothbrush)
2021-11-06 11:52:50,140 - mmdet - INFO - pseudo ig: 0.58(24527.0-person) 0.28(715.0-bicycle) 0.40(4632.0-car) 0.47(836.0-motorcycle) 0.66(238.0-airplane) 0.53(578.0-bus) 0.44(518.0-train) 0.29(910.0-truck) 0.23(1436.0-boat) 0.20(2048.0-traffic light) 0.51(168.0-fire hydrant) 0.44(250.0-stop sign) 0.11(157.0-parking meter) 0.15(1129.0-bench) 0.29(663.0-bird) 0.60(497.0-cat) 0.56(409.0-dog) 0.39(673.0-horse) 0.53(559.0-sheep) 0.25(1117.0-cow) 0.75(409.0-elephant) 0.46(99.0-bear) 0.45(717.0-zebra) 0.70(548.0-giraffe) 0.17(909.0-backpack) 0.29(989.0-umbrella) 0.10(1423.0-handbag) 0.17(976.0-tie) 0.16(730.0-suitcase) 0.29(352.0-frisbee) 0.20(811.0-skis) 0.04(512.0-snowboard) 0.30(718.0-sports ball) 0.27(940.0-kite) 0.22(313.0-baseball bat) 0.12(741.0-baseball glove) 0.31(537.0-skateboard) 0.31(658.0-surfboard) 0.46(457.0-tennis racket) 0.27(2529.0-bottle) 0.31(689.0-wine glass) 0.23(2757.0-cup) 0.10(586.0-fork) 0.07(1311.0-knife) 0.06(1072.0-spoon) 0.22(2092.0-bowl) 0.18(982.0-banana) 0.06(1177.0-apple) 0.12(750.0-sandwich) 0.15(393.0-orange) 0.24(903.0-broccoli) 0.13(1207.0-carrot) 0.00(7.0-hot dog) 0.45(572.0-pizza) 0.19(1138.0-donut) 0.13(641.0-cake) 0.16(6971.0-chair) 0.22(574.0-couch) 0.20(1336.0-potted plant) 0.40(447.0-bed) 0.24(1621.0-dining table) 0.55(395.0-toilet) 0.41(674.0-tv) 0.38(506.0-laptop) 0.37(152.0-mouse) 0.14(618.0-remote) 0.40(296.0-keyboard) 0.19(892.0-cell phone) 0.29(194.0-microwave) 0.16(433.0-oven) 0.00(0.0-toaster) 0.30(637.0-sink) 0.22(301.0-refrigerator) 0.14(2848.0-book) 0.52(618.0-clock) 0.31(547.0-vase) 0.18(147.0-scissors) 0.50(349.0-teddy bear) 0.00(0.0-hair drier) 0.04(347.0-toothbrush)
2021-11-06 11:52:50,141 - mmdet - INFO - pseudo gt: 30663.0 845.0 5312.0 1114.0 573.0 751.0 558.0 1182.0 1322.0 1596.0 233.0 280.0 126.0 1289.0 1202.0 599.0 678.0 780.0 1109.0 921.0 724.0 134.0 606.0 606.0 1096.0 1168.0 1503.0 740.0 712.0 323.0 746.0 339.0 856.0 947.0 419.0 412.0 646.0 752.0 603.0 2699.0 971.0 2374.0 642.0 916.0 661.0 1580.0 1077.0 640.0 457.0 694.0 845.0 947.0 364.0 774.0 825.0 677.0 4563.0 637.0 1038.0 520.0 1780.0 472.0 739.0 636.0 304.0 687.0 368.0 809.0 200.0 367.0 25.0 656.0 283.0 3098.0 748.0 771.0 187.0 614.0 25.0 263.0
2021-11-06 11:52:50,141 - mmdet - INFO - pseudo mining: 3615.0 9.0 311.0 24.0 18.0 28.0 17.0 10.0 27.0 70.0 23.0 100.0 0.0 1.0 3.0 28.0 4.0 22.0 60.0 11.0 102.0 1.0 86.0 121.0 2.0 43.0 0.0 11.0 2.0 27.0 5.0 0.0 101.0 103.0 15.0 20.0 9.0 5.0 75.0 108.0 6.0 39.0 1.0 2.0 0.0 48.0 12.0 26.0 6.0 9.0 28.0 14.0 0.0 20.0 1.0 0.0 8.0 1.0 24.0 1.0 20.0 64.0 73.0 18.0 21.0 8.0 6.0 10.0 5.0 0.0 0.0 15.0 1.0 13.0 258.0 8.0 0.0 32.0 0.0 0.0
2021-11-06 11:52:51,812 - mmdet - INFO - Iter [3500/40000] lr: 2.000e-02, eta: 18:54:30, time: 1.678, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0271, loss_rpn_bbox: 0.0525, loss_cls: 0.1732, acc: 93.5233, loss_bbox: 0.2653, loss_rpn_cls_unlabeled: 0.1047, loss_rpn_bbox_unlabeled: 0.1069, loss_cls_unlabeled: 0.2061, acc_unlabeled: 90.9326, loss_bbox_unlabeled: 0.1958, losses_cls_ig_unlabeled: 0.1674, pseudo_num: 1.9128, pseudo_num_ig: 6.7615, pseudo_num_mining: 0.4288, pseudo_num(acc): 0.6500, pseudo_num ig(acc): 0.3345, loss: 1.2991
2021-11-06 11:54:18,240 - mmdet - INFO - Iter [3550/40000] lr: 2.000e-02, eta: 18:51:47, time: 1.728, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0260, loss_rpn_bbox: 0.0485, loss_cls: 0.1648, acc: 93.7098, loss_bbox: 0.2598, loss_rpn_cls_unlabeled: 0.1021, loss_rpn_bbox_unlabeled: 0.1088, loss_cls_unlabeled: 0.2114, acc_unlabeled: 90.8890, loss_bbox_unlabeled: 0.2007, losses_cls_ig_unlabeled: 0.1656, pseudo_num: 1.9104, pseudo_num_ig: 6.7435, pseudo_num_mining: 0.4301, pseudo_num(acc): 0.6508, pseudo_num ig(acc): 0.3353, loss: 1.2878
2021-11-06 11:55:43,441 - mmdet - INFO - Iter [3600/40000] lr: 2.000e-02, eta: 18:48:53, time: 1.703, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0254, loss_rpn_bbox: 0.0480, loss_cls: 0.1653, acc: 93.7437, loss_bbox: 0.2533, loss_rpn_cls_unlabeled: 0.1023, loss_rpn_bbox_unlabeled: 0.1119, loss_cls_unlabeled: 0.2308, acc_unlabeled: 90.7729, loss_bbox_unlabeled: 0.2221, losses_cls_ig_unlabeled: 0.1618, pseudo_num: 1.9106, pseudo_num_ig: 6.7268, pseudo_num_mining: 0.4313, pseudo_num(acc): 0.6508, pseudo_num ig(acc): 0.3361, loss: 1.3211
2021-11-06 11:57:08,476 - mmdet - INFO - Iter [3650/40000] lr: 2.000e-02, eta: 18:46:00, time: 1.701, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0261, loss_rpn_bbox: 0.0519, loss_cls: 0.1718, acc: 93.5316, loss_bbox: 0.2588, loss_rpn_cls_unlabeled: 0.1043, loss_rpn_bbox_unlabeled: 0.1130, loss_cls_unlabeled: 0.2500, acc_unlabeled: 90.4550, loss_bbox_unlabeled: 0.2373, losses_cls_ig_unlabeled: 0.1642, pseudo_num: 1.9141, pseudo_num_ig: 6.7087, pseudo_num_mining: 0.4323, pseudo_num(acc): 0.6496, pseudo_num ig(acc): 0.3368, loss: 1.3776
2021-11-06 11:59:48,444 - mmdet - INFO - Iter [3700/40000] lr: 2.000e-02, eta: 18:55:24, time: 3.199, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0282, loss_rpn_bbox: 0.0498, loss_cls: 0.1744, acc: 93.4995, loss_bbox: 0.2641, loss_rpn_cls_unlabeled: 0.1139, loss_rpn_bbox_unlabeled: 0.1168, loss_cls_unlabeled: 0.2647, acc_unlabeled: 90.3741, loss_bbox_unlabeled: 0.2569, losses_cls_ig_unlabeled: 0.1662, pseudo_num: 1.9213, pseudo_num_ig: 6.6934, pseudo_num_mining: 0.4332, pseudo_num(acc): 0.6472, pseudo_num ig(acc): 0.3374, loss: 1.4350
2021-11-06 12:01:12,829 - mmdet - INFO - Iter [3750/40000] lr: 2.000e-02, eta: 18:52:19, time: 1.688, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0258, loss_rpn_bbox: 0.0523, loss_cls: 0.1768, acc: 93.4384, loss_bbox: 0.2592, loss_rpn_cls_unlabeled: 0.1052, loss_rpn_bbox_unlabeled: 0.1112, loss_cls_unlabeled: 0.2689, acc_unlabeled: 90.4985, loss_bbox_unlabeled: 0.2706, losses_cls_ig_unlabeled: 0.1577, pseudo_num: 1.9297, pseudo_num_ig: 6.6771, pseudo_num_mining: 0.4347, pseudo_num(acc): 0.6449, pseudo_num ig(acc): 0.3381, loss: 1.4277
2021-11-06 12:02:36,501 - mmdet - INFO - Iter [3800/40000] lr: 2.000e-02, eta: 18:49:10, time: 1.673, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0257, loss_rpn_bbox: 0.0481, loss_cls: 0.1730, acc: 93.5709, loss_bbox: 0.2562, loss_rpn_cls_unlabeled: 0.1184, loss_rpn_bbox_unlabeled: 0.1286, loss_cls_unlabeled: 0.2942, acc_unlabeled: 90.2557, loss_bbox_unlabeled: 0.3056, losses_cls_ig_unlabeled: 0.1530, pseudo_num: 1.9434, pseudo_num_ig: 6.6629, pseudo_num_mining: 0.4364, pseudo_num(acc): 0.6410, pseudo_num ig(acc): 0.3389, loss: 1.5027
2021-11-06 12:04:00,786 - mmdet - INFO - Iter [3850/40000] lr: 2.000e-02, eta: 18:46:07, time: 1.681, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0291, loss_rpn_bbox: 0.0519, loss_cls: 0.1910, acc: 93.0327, loss_bbox: 0.2711, loss_rpn_cls_unlabeled: 0.1073, loss_rpn_bbox_unlabeled: 0.1228, loss_cls_unlabeled: 0.3083, acc_unlabeled: 90.0920, loss_bbox_unlabeled: 0.3142, losses_cls_ig_unlabeled: 0.1515, pseudo_num: 1.9604, pseudo_num_ig: 6.6479, pseudo_num_mining: 0.4375, pseudo_num(acc): 0.6363, pseudo_num ig(acc): 0.3395, loss: 1.5472
2021-11-06 12:05:25,119 - mmdet - INFO - Iter [3900/40000] lr: 2.000e-02, eta: 18:43:11, time: 1.691, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0283, loss_rpn_bbox: 0.0503, loss_cls: 0.1834, acc: 93.2135, loss_bbox: 0.2617, loss_rpn_cls_unlabeled: 0.1129, loss_rpn_bbox_unlabeled: 0.1269, loss_cls_unlabeled: 0.3130, acc_unlabeled: 89.9143, loss_bbox_unlabeled: 0.3340, losses_cls_ig_unlabeled: 0.1447, pseudo_num: 1.9810, pseudo_num_ig: 6.6318, pseudo_num_mining: 0.4385, pseudo_num(acc): 0.6302, pseudo_num ig(acc): 0.3403, loss: 1.5552
2021-11-06 12:06:51,489 - mmdet - INFO - Iter [3950/40000] lr: 2.000e-02, eta: 18:40:34, time: 1.727, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0293, loss_rpn_bbox: 0.0496, loss_cls: 0.1815, acc: 93.4117, loss_bbox: 0.2474, loss_rpn_cls_unlabeled: 0.1164, loss_rpn_bbox_unlabeled: 0.1356, loss_cls_unlabeled: 0.3539, acc_unlabeled: 89.5312, loss_bbox_unlabeled: 0.3746, losses_cls_ig_unlabeled: 0.1386, pseudo_num: 2.0087, pseudo_num_ig: 6.6165, pseudo_num_mining: 0.4394, pseudo_num(acc): 0.6219, pseudo_num ig(acc): 0.3410, loss: 1.6270
2021-11-06 12:08:14,511 - mmdet - INFO - pseudo pos: 0.98(7219.0-person) 0.82(211.0-bicycle) 0.91(1298.0-car) 0.93(243.0-motorcycle) 0.97(108.0-airplane) 0.98(177.0-bus) 0.98(160.0-train) 0.65(271.0-truck) 0.55(371.0-boat) 0.82(439.0-traffic light) 0.97(71.0-fire hydrant) 1.00(70.0-stop sign) 0.44(71.0-parking meter) 0.50(308.0-bench) 0.82(231.0-bird) 0.92(166.0-cat) 0.87(161.0-dog) 0.87(209.0-horse) 0.94(146.0-sheep) 0.70(351.0-cow) 0.98(115.0-elephant) 1.00(36.0-bear) 0.98(196.0-zebra) 0.99(201.0-giraffe) 0.33(267.0-backpack) 0.75(331.0-umbrella) 0.36(426.0-handbag) 0.73(230.0-tie) 0.53(237.0-suitcase) 0.89(83.0-frisbee) 0.40(242.0-skis) 0.05(547.0-snowboard) 0.95(173.0-sports ball) 0.74(253.0-kite) 0.75(102.0-baseball bat) 0.57(181.0-baseball glove) 0.87(173.0-skateboard) 0.78(196.0-surfboard) 0.92(115.0-tennis racket) 0.81(616.0-bottle) 0.83(199.0-wine glass) 0.77(744.0-cup) 0.25(201.0-fork) 0.21(393.0-knife) 0.19(229.0-spoon) 0.69(595.0-bowl) 0.52(266.0-banana) 0.20(562.0-apple) 0.19(581.0-sandwich) 0.20(441.0-orange) 0.68(192.0-broccoli) 0.42(225.0-carrot) 0.02(4735.0-hot dog) 0.91(183.0-pizza) 0.53(259.0-donut) 0.47(212.0-cake) 0.50(1675.0-chair) 0.54(197.0-couch) 0.61(361.0-potted plant) 0.83(134.0-bed) 0.65(646.0-dining table) 0.91(128.0-toilet) 0.89(203.0-tv) 0.91(164.0-laptop) 0.90(42.0-mouse) 0.44(165.0-remote) 0.74(110.0-keyboard) 0.59(234.0-cell phone) 0.89(66.0-microwave) 0.59(186.0-oven) 0.00(0.0-toaster) 0.75(209.0-sink) 0.74(102.0-refrigerator) 0.20(769.0-book) 0.93(136.0-clock) 0.74(194.0-vase) 0.60(43.0-scissors) 0.96(97.0-teddy bear) 0.00(0.0-hair drier) 0.12(141.0-toothbrush)
2021-11-06 12:08:14,511 - mmdet - INFO - pseudo ig: 0.58(28358.0-person) 0.29(833.0-bicycle) 0.41(5235.0-car) 0.47(934.0-motorcycle) 0.65(288.0-airplane) 0.56(663.0-bus) 0.44(598.0-train) 0.30(1030.0-truck) 0.24(1537.0-boat) 0.20(2173.0-traffic light) 0.55(195.0-fire hydrant) 0.45(271.0-stop sign) 0.12(185.0-parking meter) 0.15(1262.0-bench) 0.31(772.0-bird) 0.61(569.0-cat) 0.57(479.0-dog) 0.41(760.0-horse) 0.53(602.0-sheep) 0.25(1228.0-cow) 0.74(441.0-elephant) 0.50(111.0-bear) 0.46(865.0-zebra) 0.69(628.0-giraffe) 0.17(1030.0-backpack) 0.30(1113.0-umbrella) 0.10(1585.0-handbag) 0.19(1096.0-tie) 0.17(818.0-suitcase) 0.29(387.0-frisbee) 0.21(859.0-skis) 0.05(566.0-snowboard) 0.30(784.0-sports ball) 0.27(1099.0-kite) 0.23(351.0-baseball bat) 0.13(794.0-baseball glove) 0.30(604.0-skateboard) 0.31(738.0-surfboard) 0.48(495.0-tennis racket) 0.28(2855.0-bottle) 0.31(759.0-wine glass) 0.24(3056.0-cup) 0.12(612.0-fork) 0.08(1422.0-knife) 0.06(1130.0-spoon) 0.23(2325.0-bowl) 0.19(1056.0-banana) 0.07(1193.0-apple) 0.12(755.0-sandwich) 0.13(508.0-orange) 0.25(975.0-broccoli) 0.13(1260.0-carrot) 0.00(7.0-hot dog) 0.47(630.0-pizza) 0.19(1216.0-donut) 0.15(711.0-cake) 0.16(7764.0-chair) 0.24(654.0-couch) 0.21(1480.0-potted plant) 0.39(492.0-bed) 0.25(1807.0-dining table) 0.57(442.0-toilet) 0.40(770.0-tv) 0.40(550.0-laptop) 0.39(161.0-mouse) 0.15(667.0-remote) 0.41(330.0-keyboard) 0.18(988.0-cell phone) 0.29(226.0-microwave) 0.16(503.0-oven) 0.00(0.0-toaster) 0.30(742.0-sink) 0.24(343.0-refrigerator) 0.14(3156.0-book) 0.52(702.0-clock) 0.30(624.0-vase) 0.18(153.0-scissors) 0.52(376.0-teddy bear) 0.00(0.0-hair drier) 0.04(360.0-toothbrush)
2021-11-06 12:08:14,512 - mmdet - INFO - pseudo gt: 35383.0 985.0 6080.0 1246.0 688.0 872.0 642.0 1348.0 1503.0 1795.0 275.0 303.0 157.0 1496.0 1431.0 679.0 762.0 876.0 1220.0 1045.0 780.0 151.0 729.0 702.0 1246.0 1355.0 1755.0 877.0 834.0 365.0 833.0 373.0 936.0 1108.0 481.0 463.0 739.0 847.0 689.0 3071.0 1062.0 2719.0 721.0 1042.0 772.0 1789.0 1220.0 733.0 534.0 768.0 923.0 1055.0 411.0 872.0 932.0 774.0 5324.0 752.0 1224.0 594.0 2083.0 553.0 854.0 726.0 331.0 805.0 414.0 893.0 229.0 425.0 29.0 769.0 348.0 3481.0 855.0 872.0 214.0 691.0 28.0 289.0
2021-11-06 12:08:14,512 - mmdet - INFO - pseudo mining: 4201.0 11.0 388.0 31.0 25.0 37.0 22.0 11.0 31.0 77.0 34.0 108.0 0.0 1.0 4.0 32.0 4.0 28.0 79.0 11.0 105.0 1.0 108.0 149.0 2.0 51.0 1.0 18.0 2.0 31.0 7.0 0.0 119.0 124.0 16.0 24.0 10.0 9.0 89.0 127.0 6.0 57.0 1.0 3.0 0.0 55.0 14.0 26.0 7.0 9.0 28.0 14.0 0.0 23.0 1.0 0.0 10.0 1.0 31.0 3.0 24.0 78.0 86.0 27.0 26.0 8.0 7.0 12.0 10.0 2.0 0.0 16.0 1.0 13.0 303.0 8.0 0.0 34.0 0.0 0.0
2021-11-06 12:09:10,827 - mmdet - INFO - Evaluating bbox...
2021-11-06 12:10:14,462 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.352 | bicycle | 0.139 | car | 0.260 |
| motorcycle | 0.207 | airplane | 0.233 | bus | 0.356 |
| train | 0.321 | truck | 0.109 | boat | 0.078 |
| traffic light | 0.159 | fire hydrant | 0.363 | stop sign | 0.463 |
| parking meter | 0.251 | bench | 0.079 | bird | 0.119 |
| cat | 0.325 | dog | 0.300 | horse | 0.268 |
| sheep | 0.204 | cow | 0.186 | elephant | 0.311 |
| bear | 0.287 | zebra | 0.394 | giraffe | 0.420 |
| backpack | 0.032 | umbrella | 0.121 | handbag | 0.029 |
| tie | 0.127 | suitcase | 0.058 | frisbee | 0.250 |
| skis | 0.044 | snowboard | 0.026 | sports ball | 0.256 |
| kite | 0.170 | baseball bat | 0.072 | baseball glove | 0.165 |
| skateboard | 0.178 | surfboard | 0.108 | tennis racket | 0.207 |
| bottle | 0.177 | wine glass | 0.123 | cup | 0.195 |
| fork | 0.010 | knife | 0.017 | spoon | 0.007 |
| bowl | 0.192 | banana | 0.050 | apple | 0.060 |
| sandwich | 0.104 | orange | 0.105 | broccoli | 0.081 |
| carrot | 0.018 | hot dog | 0.003 | pizza | 0.223 |
| donut | 0.095 | cake | 0.057 | chair | 0.084 |
| couch | 0.130 | potted plant | 0.075 | bed | 0.177 |
| dining table | 0.107 | toilet | 0.278 | tv | 0.280 |
| laptop | 0.277 | mouse | 0.295 | remote | 0.059 |
| keyboard | 0.186 | cell phone | 0.132 | microwave | 0.273 |
| oven | 0.123 | toaster | 0.000 | sink | 0.136 |
| refrigerator | 0.150 | book | 0.021 | clock | 0.342 |
| vase | 0.144 | scissors | 0.053 | teddy bear | 0.156 |
| hair drier | 0.000 | toothbrush | 0.024 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 12:11:09,986 - mmdet - INFO - Evaluating bbox...
2021-11-06 12:12:20,338 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.381 | bicycle | 0.150 | car | 0.279 |
| motorcycle | 0.227 | airplane | 0.281 | bus | 0.415 |
| train | 0.338 | truck | 0.129 | boat | 0.105 |
| traffic light | 0.183 | fire hydrant | 0.399 | stop sign | 0.473 |
| parking meter | 0.226 | bench | 0.098 | bird | 0.152 |
| cat | 0.381 | dog | 0.318 | horse | 0.338 |
| sheep | 0.250 | cow | 0.252 | elephant | 0.381 |
| bear | 0.447 | zebra | 0.412 | giraffe | 0.466 |
| backpack | 0.041 | umbrella | 0.151 | handbag | 0.039 |
| tie | 0.144 | suitcase | 0.081 | frisbee | 0.347 |
| skis | 0.064 | snowboard | 0.052 | sports ball | 0.311 |
| kite | 0.215 | baseball bat | 0.099 | baseball glove | 0.200 |
| skateboard | 0.220 | surfboard | 0.133 | tennis racket | 0.221 |
| bottle | 0.212 | wine glass | 0.162 | cup | 0.245 |
| fork | 0.027 | knife | 0.028 | spoon | 0.013 |
| bowl | 0.247 | banana | 0.085 | apple | 0.090 |
| sandwich | 0.137 | orange | 0.135 | broccoli | 0.120 |
| carrot | 0.048 | hot dog | 0.010 | pizza | 0.298 |
| donut | 0.172 | cake | 0.075 | chair | 0.099 |
| couch | 0.153 | potted plant | 0.115 | bed | 0.207 |
| dining table | 0.110 | toilet | 0.328 | tv | 0.338 |
| laptop | 0.305 | mouse | 0.354 | remote | 0.072 |
| keyboard | 0.245 | cell phone | 0.162 | microwave | 0.304 |
| oven | 0.138 | toaster | 0.000 | sink | 0.159 |
| refrigerator | 0.244 | book | 0.034 | clock | 0.370 |
| vase | 0.199 | scissors | 0.067 | teddy bear | 0.226 |
| hair drier | 0.000 | toothbrush | 0.034 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 12:13:46,044 - mmdet - INFO - current percent: 0.2
2021-11-06 12:13:46,044 - mmdet - INFO - update score thr (positive): (0.99-person) (0.97-bicycle) (0.99-car) (0.99-motorcycle) (0.99-airplane) (0.99-bus) (0.99-train) (0.95-truck) (0.97-boat) (0.96-traffic light) (1.00-fire hydrant) (1.00-stop sign) (0.92-parking meter) (0.93-bench) (0.95-bird) (0.99-cat) (0.97-dog) (0.97-horse) (0.99-sheep) (0.94-cow) (1.00-elephant) (0.99-bear) (1.00-zebra) (1.00-giraffe) (0.87-backpack) (0.97-umbrella) (0.77-handbag) (0.95-tie) (0.89-suitcase) (0.98-frisbee) (0.86-skis) (0.84-snowboard) (0.99-sports ball) (0.97-kite) (0.98-baseball bat) (0.99-baseball glove) (0.97-skateboard) (0.94-surfboard) (1.00-tennis racket) (0.97-bottle) (0.97-wine glass) (0.97-cup) (0.94-fork) (0.75-knife) (0.60-spoon) (0.92-bowl) (0.82-banana) (0.71-apple) (0.42-sandwich) (0.93-orange) (0.95-broccoli) (0.77-carrot) (0.93-hot dog) (0.96-pizza) (0.71-donut) (0.71-cake) (0.85-chair) (0.93-couch) (0.96-potted plant) (0.95-bed) (0.92-dining table) (1.00-toilet) (0.99-tv) (0.99-laptop) (1.00-mouse) (0.86-remote) (0.99-keyboard) (0.94-cell phone) (0.98-microwave) (0.97-oven) (0.05-toaster) (0.98-sink) (0.95-refrigerator) (0.83-book) (1.00-clock) (0.94-vase) (0.85-scissors) (0.99-teddy bear) (0.05-hair drier) (0.60-toothbrush)
2021-11-06 12:13:46,045 - mmdet - INFO - update score thr (ignore): (0.35-person) (0.40-bicycle) (0.43-car) (0.40-motorcycle) (0.79-airplane) (0.55-bus) (0.50-train) (0.45-truck) (0.43-boat) (0.34-traffic light) (0.53-fire hydrant) (0.73-stop sign) (0.21-parking meter) (0.35-bench) (0.19-bird) (0.57-cat) (0.49-dog) (0.31-horse) (0.73-sheep) (0.35-cow) (0.72-elephant) (0.42-bear) (0.19-zebra) (0.24-giraffe) (0.38-backpack) (0.27-umbrella) (0.27-handbag) (0.31-tie) (0.27-suitcase) (0.49-frisbee) (0.29-skis) (0.43-snowboard) (0.36-sports ball) (0.45-kite) (0.40-baseball bat) (0.56-baseball glove) (0.37-skateboard) (0.38-surfboard) (0.84-tennis racket) (0.41-bottle) (0.19-wine glass) (0.29-cup) (0.20-fork) (0.26-knife) (0.15-spoon) (0.26-bowl) (0.17-banana) (0.23-apple) (0.15-sandwich) (0.77-orange) (0.48-broccoli) (0.29-carrot) (0.91-hot dog) (0.37-pizza) (0.18-donut) (0.18-cake) (0.25-chair) (0.42-couch) (0.43-potted plant) (0.47-bed) (0.38-dining table) (0.61-toilet) (0.66-tv) (0.52-laptop) (0.73-mouse) (0.28-remote) (0.60-keyboard) (0.39-cell phone) (0.54-microwave) (0.54-oven) (0.05-toaster) (0.42-sink) (0.55-refrigerator) (0.34-book) (0.77-clock) (0.28-vase) (0.19-scissors) (0.71-teddy bear) (0.05-hair drier) (0.12-toothbrush)
2021-11-06 12:13:46,323 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 12:13:46,323 - mmdet - INFO - Iter [4000/40000] lr: 2.000e-02, eta: 18:37:43, time: 1.692, data_time: 0.030, memory: 26488, bbox_mAP: 0.1970, bbox_mAP_50: 0.3670, bbox_mAP_75: 0.1900, bbox_mAP_s: 0.0990, bbox_mAP_m: 0.2230, bbox_mAP_l: 0.2570, bbox_mAP_copypaste: 0.197 0.367 0.190 0.099 0.223 0.257, loss_rpn_cls: 0.0283, loss_rpn_bbox: 0.0469, loss_cls: 0.1844, acc: 93.3054, loss_bbox: 0.2560, loss_rpn_cls_unlabeled: 0.1256, loss_rpn_bbox_unlabeled: 0.1418, loss_cls_unlabeled: 0.3673, acc_unlabeled: 89.2999, loss_bbox_unlabeled: 0.4089, losses_cls_ig_unlabeled: 0.1375, pseudo_num: 2.0482, pseudo_num_ig: 6.5999, pseudo_num_mining: 0.4403, pseudo_num(acc): 0.6100, pseudo_num ig(acc): 0.3417, loss: 1.6966
2021-11-06 12:15:10,600 - mmdet - INFO - Iter [4050/40000] lr: 2.000e-02, eta: 19:23:44, time: 8.292, data_time: 6.633, memory: 26488, loss_rpn_cls: 0.0258, loss_rpn_bbox: 0.0478, loss_cls: 0.1668, acc: 93.7549, loss_bbox: 0.2541, loss_rpn_cls_unlabeled: 0.1080, loss_rpn_bbox_unlabeled: 0.1128, loss_cls_unlabeled: 0.2012, acc_unlabeled: 90.9453, loss_bbox_unlabeled: 0.1941, losses_cls_ig_unlabeled: 0.1756, pseudo_num: 2.0676, pseudo_num_ig: 6.5877, pseudo_num_mining: 0.4416, pseudo_num(acc): 0.6050, pseudo_num ig(acc): 0.3422, loss: 1.2862
2021-11-06 12:16:37,154 - mmdet - INFO - Iter [4100/40000] lr: 2.000e-02, eta: 19:20:31, time: 1.724, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0248, loss_rpn_bbox: 0.0487, loss_cls: 0.1592, acc: 93.9768, loss_bbox: 0.2513, loss_rpn_cls_unlabeled: 0.1029, loss_rpn_bbox_unlabeled: 0.1124, loss_cls_unlabeled: 0.1911, acc_unlabeled: 90.7881, loss_bbox_unlabeled: 0.1876, losses_cls_ig_unlabeled: 0.1728, pseudo_num: 2.0622, pseudo_num_ig: 6.5791, pseudo_num_mining: 0.4430, pseudo_num(acc): 0.6069, pseudo_num ig(acc): 0.3427, loss: 1.2507
2021-11-06 12:18:02,377 - mmdet - INFO - Iter [4150/40000] lr: 2.000e-02, eta: 19:17:14, time: 1.710, data_time: 0.033, memory: 26488, loss_rpn_cls: 0.0241, loss_rpn_bbox: 0.0490, loss_cls: 0.1605, acc: 93.8710, loss_bbox: 0.2613, loss_rpn_cls_unlabeled: 0.1065, loss_rpn_bbox_unlabeled: 0.1090, loss_cls_unlabeled: 0.2008, acc_unlabeled: 90.7491, loss_bbox_unlabeled: 0.1905, losses_cls_ig_unlabeled: 0.1729, pseudo_num: 2.0568, pseudo_num_ig: 6.5717, pseudo_num_mining: 0.4448, pseudo_num(acc): 0.6087, pseudo_num ig(acc): 0.3432, loss: 1.2745
2021-11-06 12:19:27,068 - mmdet - INFO - Iter [4200/40000] lr: 2.000e-02, eta: 19:13:55, time: 1.696, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0242, loss_rpn_bbox: 0.0488, loss_cls: 0.1601, acc: 93.8623, loss_bbox: 0.2572, loss_rpn_cls_unlabeled: 0.0986, loss_rpn_bbox_unlabeled: 0.1084, loss_cls_unlabeled: 0.1926, acc_unlabeled: 91.0059, loss_bbox_unlabeled: 0.1824, losses_cls_ig_unlabeled: 0.1686, pseudo_num: 2.0509, pseudo_num_ig: 6.5629, pseudo_num_mining: 0.4465, pseudo_num(acc): 0.6103, pseudo_num ig(acc): 0.3437, loss: 1.2409
2021-11-06 12:20:51,222 - mmdet - INFO - Iter [4250/40000] lr: 2.000e-02, eta: 19:10:32, time: 1.682, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0230, loss_rpn_bbox: 0.0478, loss_cls: 0.1487, acc: 94.3408, loss_bbox: 0.2425, loss_rpn_cls_unlabeled: 0.1004, loss_rpn_bbox_unlabeled: 0.1081, loss_cls_unlabeled: 0.1919, acc_unlabeled: 90.9587, loss_bbox_unlabeled: 0.1881, losses_cls_ig_unlabeled: 0.1602, pseudo_num: 2.0457, pseudo_num_ig: 6.5527, pseudo_num_mining: 0.4481, pseudo_num(acc): 0.6119, pseudo_num ig(acc): 0.3442, loss: 1.2107
2021-11-06 12:22:15,419 - mmdet - INFO - Iter [4300/40000] lr: 2.000e-02, eta: 19:07:13, time: 1.684, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0251, loss_rpn_bbox: 0.0493, loss_cls: 0.1552, acc: 94.0350, loss_bbox: 0.2525, loss_rpn_cls_unlabeled: 0.1049, loss_rpn_bbox_unlabeled: 0.1118, loss_cls_unlabeled: 0.2012, acc_unlabeled: 90.7493, loss_bbox_unlabeled: 0.1974, losses_cls_ig_unlabeled: 0.1646, pseudo_num: 2.0417, pseudo_num_ig: 6.5446, pseudo_num_mining: 0.4490, pseudo_num(acc): 0.6136, pseudo_num ig(acc): 0.3446, loss: 1.2619
2021-11-06 12:23:39,788 - mmdet - INFO - Iter [4350/40000] lr: 2.000e-02, eta: 19:03:58, time: 1.687, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0226, loss_rpn_bbox: 0.0460, loss_cls: 0.1516, acc: 94.2128, loss_bbox: 0.2484, loss_rpn_cls_unlabeled: 0.1013, loss_rpn_bbox_unlabeled: 0.1053, loss_cls_unlabeled: 0.1918, acc_unlabeled: 91.0538, loss_bbox_unlabeled: 0.1902, losses_cls_ig_unlabeled: 0.1630, pseudo_num: 2.0372, pseudo_num_ig: 6.5348, pseudo_num_mining: 0.4498, pseudo_num(acc): 0.6152, pseudo_num ig(acc): 0.3450, loss: 1.2201
2021-11-06 12:25:03,326 - mmdet - INFO - Iter [4400/40000] lr: 2.000e-02, eta: 19:00:38, time: 1.669, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0231, loss_rpn_bbox: 0.0463, loss_cls: 0.1501, acc: 94.2306, loss_bbox: 0.2477, loss_rpn_cls_unlabeled: 0.1018, loss_rpn_bbox_unlabeled: 0.1099, loss_cls_unlabeled: 0.2009, acc_unlabeled: 90.8517, loss_bbox_unlabeled: 0.1991, losses_cls_ig_unlabeled: 0.1626, pseudo_num: 2.0341, pseudo_num_ig: 6.5247, pseudo_num_mining: 0.4506, pseudo_num(acc): 0.6168, pseudo_num ig(acc): 0.3454, loss: 1.2414
2021-11-06 12:26:29,694 - mmdet - INFO - Iter [4450/40000] lr: 2.000e-02, eta: 18:57:45, time: 1.730, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0233, loss_rpn_bbox: 0.0489, loss_cls: 0.1546, acc: 94.1016, loss_bbox: 0.2487, loss_rpn_cls_unlabeled: 0.0996, loss_rpn_bbox_unlabeled: 0.1087, loss_cls_unlabeled: 0.2069, acc_unlabeled: 90.8207, loss_bbox_unlabeled: 0.1965, losses_cls_ig_unlabeled: 0.1640, pseudo_num: 2.0307, pseudo_num_ig: 6.5166, pseudo_num_mining: 0.4520, pseudo_num(acc): 0.6181, pseudo_num ig(acc): 0.3457, loss: 1.2512
2021-11-06 12:27:53,800 - mmdet - INFO - pseudo pos: 0.98(8225.0-person) 0.83(235.0-bicycle) 0.90(1442.0-car) 0.93(270.0-motorcycle) 0.97(121.0-airplane) 0.98(206.0-bus) 0.97(179.0-train) 0.66(315.0-truck) 0.56(398.0-boat) 0.83(507.0-traffic light) 0.97(75.0-fire hydrant) 1.00(73.0-stop sign) 0.47(76.0-parking meter) 0.52(330.0-bench) 0.84(274.0-bird) 0.91(186.0-cat) 0.88(180.0-dog) 0.89(245.0-horse) 0.95(176.0-sheep) 0.70(368.0-cow) 0.98(129.0-elephant) 1.00(39.0-bear) 0.98(226.0-zebra) 0.99(230.0-giraffe) 0.34(297.0-backpack) 0.76(370.0-umbrella) 0.36(490.0-handbag) 0.74(245.0-tie) 0.52(253.0-suitcase) 0.89(93.0-frisbee) 0.42(267.0-skis) 0.05(551.0-snowboard) 0.95(193.0-sports ball) 0.74(296.0-kite) 0.77(111.0-baseball bat) 0.59(198.0-baseball glove) 0.89(193.0-skateboard) 0.77(216.0-surfboard) 0.93(125.0-tennis racket) 0.80(713.0-bottle) 0.83(214.0-wine glass) 0.77(838.0-cup) 0.25(214.0-fork) 0.21(431.0-knife) 0.19(245.0-spoon) 0.69(675.0-bowl) 0.51(300.0-banana) 0.21(612.0-apple) 0.22(663.0-sandwich) 0.20(462.0-orange) 0.67(217.0-broccoli) 0.41(255.0-carrot) 0.02(4736.0-hot dog) 0.92(206.0-pizza) 0.51(327.0-donut) 0.45(252.0-cake) 0.51(1873.0-chair) 0.55(215.0-couch) 0.62(395.0-potted plant) 0.84(156.0-bed) 0.65(748.0-dining table) 0.91(140.0-toilet) 0.89(226.0-tv) 0.92(184.0-laptop) 0.91(45.0-mouse) 0.45(181.0-remote) 0.76(119.0-keyboard) 0.58(270.0-cell phone) 0.90(72.0-microwave) 0.60(200.0-oven) 0.00(0.0-toaster) 0.74(240.0-sink) 0.75(114.0-refrigerator) 0.19(853.0-book) 0.94(150.0-clock) 0.76(209.0-vase) 0.60(47.0-scissors) 0.95(110.0-teddy bear) 0.00(0.0-hair drier) 0.14(151.0-toothbrush)
2021-11-06 12:27:53,800 - mmdet - INFO - pseudo ig: 0.58(31838.0-person) 0.28(916.0-bicycle) 0.41(5816.0-car) 0.47(1019.0-motorcycle) 0.67(335.0-airplane) 0.56(741.0-bus) 0.45(665.0-train) 0.30(1186.0-truck) 0.25(1672.0-boat) 0.21(2413.0-traffic light) 0.55(212.0-fire hydrant) 0.44(290.0-stop sign) 0.13(206.0-parking meter) 0.16(1363.0-bench) 0.30(866.0-bird) 0.62(620.0-cat) 0.58(534.0-dog) 0.41(829.0-horse) 0.54(685.0-sheep) 0.26(1345.0-cow) 0.77(514.0-elephant) 0.48(132.0-bear) 0.46(1020.0-zebra) 0.70(696.0-giraffe) 0.17(1142.0-backpack) 0.31(1324.0-umbrella) 0.11(1795.0-handbag) 0.20(1165.0-tie) 0.17(886.0-suitcase) 0.31(423.0-frisbee) 0.21(922.0-skis) 0.06(577.0-snowboard) 0.31(860.0-sports ball) 0.27(1211.0-kite) 0.24(399.0-baseball bat) 0.14(854.0-baseball glove) 0.32(667.0-skateboard) 0.31(813.0-surfboard) 0.50(530.0-tennis racket) 0.29(3152.0-bottle) 0.31(837.0-wine glass) 0.25(3343.0-cup) 0.13(670.0-fork) 0.08(1532.0-knife) 0.06(1203.0-spoon) 0.23(2649.0-bowl) 0.18(1190.0-banana) 0.07(1295.0-apple) 0.12(875.0-sandwich) 0.13(534.0-orange) 0.26(1062.0-broccoli) 0.13(1368.0-carrot) 0.00(8.0-hot dog) 0.47(717.0-pizza) 0.19(1335.0-donut) 0.15(822.0-cake) 0.16(8430.0-chair) 0.24(759.0-couch) 0.21(1642.0-potted plant) 0.38(556.0-bed) 0.25(2058.0-dining table) 0.57(495.0-toilet) 0.41(843.0-tv) 0.41(602.0-laptop) 0.42(176.0-mouse) 0.15(749.0-remote) 0.40(369.0-keyboard) 0.18(1075.0-cell phone) 0.30(242.0-microwave) 0.17(535.0-oven) 0.00(0.0-toaster) 0.29(816.0-sink) 0.24(369.0-refrigerator) 0.14(3478.0-book) 0.53(771.0-clock) 0.30(706.0-vase) 0.21(194.0-scissors) 0.54(420.0-teddy bear) 0.00(0.0-hair drier) 0.05(402.0-toothbrush)
2021-11-06 12:27:53,801 - mmdet - INFO - pseudo gt: 39805.0 1120.0 6849.0 1383.0 806.0 1000.0 719.0 1564.0 1684.0 2051.0 300.0 318.0 174.0 1634.0 1635.0 757.0 849.0 962.0 1394.0 1148.0 909.0 163.0 849.0 798.0 1394.0 1608.0 1961.0 971.0 913.0 405.0 923.0 438.0 1042.0 1235.0 528.0 538.0 832.0 948.0 771.0 3478.0 1172.0 3066.0 807.0 1149.0 884.0 2019.0 1344.0 840.0 634.0 842.0 1090.0 1141.0 490.0 984.0 1024.0 868.0 5900.0 870.0 1426.0 658.0 2350.0 614.0 952.0 828.0 368.0 901.0 480.0 1002.0 249.0 464.0 29.0 865.0 395.0 4003.0 953.0 989.0 249.0 775.0 33.0 351.0
2021-11-06 12:27:53,801 - mmdet - INFO - pseudo mining: 4813.0 13.0 475.0 33.0 41.0 46.0 29.0 12.0 35.0 97.0 37.0 113.0 0.0 3.0 6.0 36.0 8.0 28.0 101.0 12.0 135.0 3.0 127.0 172.0 4.0 68.0 1.0 19.0 2.0 35.0 7.0 0.0 141.0 140.0 21.0 35.0 13.0 10.0 106.0 156.0 7.0 73.0 1.0 3.0 0.0 56.0 15.0 26.0 7.0 12.0 32.0 14.0 0.0 23.0 1.0 0.0 10.0 1.0 41.0 3.0 24.0 95.0 97.0 34.0 33.0 10.0 14.0 13.0 11.0 3.0 0.0 20.0 1.0 13.0 352.0 9.0 1.0 37.0 0.0 0.0
2021-11-06 12:27:55,595 - mmdet - INFO - Iter [4500/40000] lr: 2.000e-02, eta: 18:54:49, time: 1.718, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0249, loss_rpn_bbox: 0.0496, loss_cls: 0.1568, acc: 94.0679, loss_bbox: 0.2481, loss_rpn_cls_unlabeled: 0.1017, loss_rpn_bbox_unlabeled: 0.1145, loss_cls_unlabeled: 0.2147, acc_unlabeled: 90.9014, loss_bbox_unlabeled: 0.2089, losses_cls_ig_unlabeled: 0.1593, pseudo_num: 2.0282, pseudo_num_ig: 6.5073, pseudo_num_mining: 0.4529, pseudo_num(acc): 0.6195, pseudo_num ig(acc): 0.3460, loss: 1.2784
2021-11-06 12:29:20,244 - mmdet - INFO - Iter [4550/40000] lr: 2.000e-02, eta: 18:51:44, time: 1.689, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0252, loss_rpn_bbox: 0.0509, loss_cls: 0.1582, acc: 93.9664, loss_bbox: 0.2511, loss_rpn_cls_unlabeled: 0.1034, loss_rpn_bbox_unlabeled: 0.1154, loss_cls_unlabeled: 0.2150, acc_unlabeled: 90.9050, loss_bbox_unlabeled: 0.2112, losses_cls_ig_unlabeled: 0.1603, pseudo_num: 2.0270, pseudo_num_ig: 6.5009, pseudo_num_mining: 0.4540, pseudo_num(acc): 0.6209, pseudo_num ig(acc): 0.3462, loss: 1.2907
2021-11-06 12:30:45,641 - mmdet - INFO - Iter [4600/40000] lr: 2.000e-02, eta: 18:48:49, time: 1.710, data_time: 0.033, memory: 26488, loss_rpn_cls: 0.0227, loss_rpn_bbox: 0.0478, loss_cls: 0.1512, acc: 94.1953, loss_bbox: 0.2452, loss_rpn_cls_unlabeled: 0.0980, loss_rpn_bbox_unlabeled: 0.1095, loss_cls_unlabeled: 0.2149, acc_unlabeled: 90.8212, loss_bbox_unlabeled: 0.2117, losses_cls_ig_unlabeled: 0.1607, pseudo_num: 2.0255, pseudo_num_ig: 6.4928, pseudo_num_mining: 0.4549, pseudo_num(acc): 0.6223, pseudo_num ig(acc): 0.3465, loss: 1.2617
2021-11-06 12:32:10,048 - mmdet - INFO - Iter [4650/40000] lr: 2.000e-02, eta: 18:45:49, time: 1.691, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0230, loss_rpn_bbox: 0.0458, loss_cls: 0.1414, acc: 94.6012, loss_bbox: 0.2336, loss_rpn_cls_unlabeled: 0.0972, loss_rpn_bbox_unlabeled: 0.1056, loss_cls_unlabeled: 0.2010, acc_unlabeled: 91.2130, loss_bbox_unlabeled: 0.2016, losses_cls_ig_unlabeled: 0.1551, pseudo_num: 2.0234, pseudo_num_ig: 6.4842, pseudo_num_mining: 0.4556, pseudo_num(acc): 0.6235, pseudo_num ig(acc): 0.3467, loss: 1.2042
2021-11-06 12:33:34,545 - mmdet - INFO - Iter [4700/40000] lr: 2.000e-02, eta: 18:42:50, time: 1.688, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0219, loss_rpn_bbox: 0.0479, loss_cls: 0.1516, acc: 94.1765, loss_bbox: 0.2465, loss_rpn_cls_unlabeled: 0.1036, loss_rpn_bbox_unlabeled: 0.1128, loss_cls_unlabeled: 0.2146, acc_unlabeled: 90.5194, loss_bbox_unlabeled: 0.2104, losses_cls_ig_unlabeled: 0.1665, pseudo_num: 2.0213, pseudo_num_ig: 6.4774, pseudo_num_mining: 0.4563, pseudo_num(acc): 0.6246, pseudo_num ig(acc): 0.3469, loss: 1.2758
2021-11-06 12:34:59,238 - mmdet - INFO - Iter [4750/40000] lr: 2.000e-02, eta: 18:39:55, time: 1.696, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0242, loss_rpn_bbox: 0.0496, loss_cls: 0.1535, acc: 94.1327, loss_bbox: 0.2485, loss_rpn_cls_unlabeled: 0.1030, loss_rpn_bbox_unlabeled: 0.1122, loss_cls_unlabeled: 0.2061, acc_unlabeled: 90.9222, loss_bbox_unlabeled: 0.2108, losses_cls_ig_unlabeled: 0.1568, pseudo_num: 2.0199, pseudo_num_ig: 6.4729, pseudo_num_mining: 0.4572, pseudo_num(acc): 0.6257, pseudo_num ig(acc): 0.3471, loss: 1.2648
2021-11-06 12:36:22,136 - mmdet - INFO - Iter [4800/40000] lr: 2.000e-02, eta: 18:36:48, time: 1.656, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0239, loss_rpn_bbox: 0.0478, loss_cls: 0.1561, acc: 94.0414, loss_bbox: 0.2462, loss_rpn_cls_unlabeled: 0.1024, loss_rpn_bbox_unlabeled: 0.1103, loss_cls_unlabeled: 0.2087, acc_unlabeled: 90.8169, loss_bbox_unlabeled: 0.2070, losses_cls_ig_unlabeled: 0.1583, pseudo_num: 2.0191, pseudo_num_ig: 6.4684, pseudo_num_mining: 0.4579, pseudo_num(acc): 0.6268, pseudo_num ig(acc): 0.3473, loss: 1.2608
2021-11-06 12:37:45,287 - mmdet - INFO - Iter [4850/40000] lr: 2.000e-02, eta: 18:33:46, time: 1.664, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0234, loss_rpn_bbox: 0.0458, loss_cls: 0.1455, acc: 94.4202, loss_bbox: 0.2389, loss_rpn_cls_unlabeled: 0.1060, loss_rpn_bbox_unlabeled: 0.1108, loss_cls_unlabeled: 0.2097, acc_unlabeled: 90.9470, loss_bbox_unlabeled: 0.2152, losses_cls_ig_unlabeled: 0.1569, pseudo_num: 2.0179, pseudo_num_ig: 6.4639, pseudo_num_mining: 0.4591, pseudo_num(acc): 0.6278, pseudo_num ig(acc): 0.3475, loss: 1.2522
2021-11-06 12:39:10,299 - mmdet - INFO - Iter [4900/40000] lr: 2.000e-02, eta: 18:30:58, time: 1.696, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0242, loss_rpn_bbox: 0.0467, loss_cls: 0.1508, acc: 94.2979, loss_bbox: 0.2449, loss_rpn_cls_unlabeled: 0.1088, loss_rpn_bbox_unlabeled: 0.1121, loss_cls_unlabeled: 0.2225, acc_unlabeled: 90.8473, loss_bbox_unlabeled: 0.2246, losses_cls_ig_unlabeled: 0.1584, pseudo_num: 2.0175, pseudo_num_ig: 6.4571, pseudo_num_mining: 0.4601, pseudo_num(acc): 0.6287, pseudo_num ig(acc): 0.3478, loss: 1.2931
2021-11-06 12:40:34,141 - mmdet - INFO - Iter [4950/40000] lr: 2.000e-02, eta: 18:28:06, time: 1.682, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0227, loss_rpn_bbox: 0.0470, loss_cls: 0.1453, acc: 94.4060, loss_bbox: 0.2404, loss_rpn_cls_unlabeled: 0.1023, loss_rpn_bbox_unlabeled: 0.1143, loss_cls_unlabeled: 0.2201, acc_unlabeled: 90.9240, loss_bbox_unlabeled: 0.2222, losses_cls_ig_unlabeled: 0.1582, pseudo_num: 2.0171, pseudo_num_ig: 6.4520, pseudo_num_mining: 0.4610, pseudo_num(acc): 0.6295, pseudo_num ig(acc): 0.3480, loss: 1.2723
2021-11-06 12:41:56,476 - mmdet - INFO - pseudo pos: 0.98(9261.0-person) 0.83(267.0-bicycle) 0.91(1598.0-car) 0.94(299.0-motorcycle) 0.95(131.0-airplane) 0.98(223.0-bus) 0.97(197.0-train) 0.65(350.0-truck) 0.58(427.0-boat) 0.84(551.0-traffic light) 0.98(81.0-fire hydrant) 1.00(82.0-stop sign) 0.49(79.0-parking meter) 0.53(352.0-bench) 0.85(320.0-bird) 0.92(203.0-cat) 0.89(211.0-dog) 0.90(296.0-horse) 0.95(196.0-sheep) 0.72(397.0-cow) 0.99(144.0-elephant) 1.00(42.0-bear) 0.98(254.0-zebra) 0.99(262.0-giraffe) 0.35(323.0-backpack) 0.76(421.0-umbrella) 0.36(536.0-handbag) 0.74(273.0-tie) 0.53(277.0-suitcase) 0.88(103.0-frisbee) 0.42(285.0-skis) 0.06(556.0-snowboard) 0.96(209.0-sports ball) 0.73(342.0-kite) 0.78(126.0-baseball bat) 0.61(211.0-baseball glove) 0.90(213.0-skateboard) 0.77(245.0-surfboard) 0.92(131.0-tennis racket) 0.80(797.0-bottle) 0.84(237.0-wine glass) 0.78(923.0-cup) 0.25(217.0-fork) 0.22(475.0-knife) 0.22(293.0-spoon) 0.68(795.0-bowl) 0.52(378.0-banana) 0.22(662.0-apple) 0.21(973.0-sandwich) 0.22(476.0-orange) 0.67(240.0-broccoli) 0.40(320.0-carrot) 0.02(4736.0-hot dog) 0.92(230.0-pizza) 0.53(426.0-donut) 0.43(322.0-cake) 0.51(2041.0-chair) 0.57(247.0-couch) 0.63(438.0-potted plant) 0.82(180.0-bed) 0.66(840.0-dining table) 0.89(160.0-toilet) 0.89(247.0-tv) 0.93(205.0-laptop) 0.91(47.0-mouse) 0.46(192.0-remote) 0.77(130.0-keyboard) 0.58(295.0-cell phone) 0.90(81.0-microwave) 0.62(215.0-oven) 0.00(0.0-toaster) 0.75(270.0-sink) 0.76(122.0-refrigerator) 0.20(965.0-book) 0.94(170.0-clock) 0.76(248.0-vase) 0.58(50.0-scissors) 0.93(124.0-teddy bear) 0.00(0.0-hair drier) 0.13(164.0-toothbrush)
2021-11-06 12:41:56,477 - mmdet - INFO - pseudo ig: 0.57(35062.0-person) 0.29(981.0-bicycle) 0.42(6347.0-car) 0.47(1107.0-motorcycle) 0.68(377.0-airplane) 0.57(799.0-bus) 0.46(716.0-train) 0.30(1292.0-truck) 0.26(1829.0-boat) 0.21(2611.0-traffic light) 0.56(236.0-fire hydrant) 0.45(328.0-stop sign) 0.14(223.0-parking meter) 0.16(1482.0-bench) 0.33(968.0-bird) 0.63(677.0-cat) 0.58(580.0-dog) 0.42(927.0-horse) 0.56(752.0-sheep) 0.26(1482.0-cow) 0.77(572.0-elephant) 0.47(149.0-bear) 0.47(1089.0-zebra) 0.70(776.0-giraffe) 0.17(1232.0-backpack) 0.30(1498.0-umbrella) 0.12(1957.0-handbag) 0.20(1239.0-tie) 0.17(955.0-suitcase) 0.31(453.0-frisbee) 0.22(1007.0-skis) 0.06(603.0-snowboard) 0.32(928.0-sports ball) 0.27(1332.0-kite) 0.24(429.0-baseball bat) 0.15(887.0-baseball glove) 0.32(718.0-skateboard) 0.32(902.0-surfboard) 0.52(563.0-tennis racket) 0.29(3462.0-bottle) 0.31(921.0-wine glass) 0.26(3659.0-cup) 0.14(709.0-fork) 0.09(1680.0-knife) 0.07(1339.0-spoon) 0.23(3054.0-bowl) 0.17(1533.0-banana) 0.07(1418.0-apple) 0.10(1244.0-sandwich) 0.15(555.0-orange) 0.26(1139.0-broccoli) 0.13(1532.0-carrot) 0.00(8.0-hot dog) 0.46(785.0-pizza) 0.18(1589.0-donut) 0.15(971.0-cake) 0.17(9016.0-chair) 0.24(860.0-couch) 0.23(1789.0-potted plant) 0.37(633.0-bed) 0.25(2339.0-dining table) 0.57(538.0-toilet) 0.41(912.0-tv) 0.42(648.0-laptop) 0.44(190.0-mouse) 0.15(804.0-remote) 0.40(405.0-keyboard) 0.18(1150.0-cell phone) 0.30(257.0-microwave) 0.16(571.0-oven) 0.00(0.0-toaster) 0.30(876.0-sink) 0.24(397.0-refrigerator) 0.14(3894.0-book) 0.54(827.0-clock) 0.31(781.0-vase) 0.22(217.0-scissors) 0.53(462.0-teddy bear) 0.00(0.0-hair drier) 0.05(450.0-toothbrush)
2021-11-06 12:41:56,477 - mmdet - INFO - pseudo gt: 43982.0 1212.0 7589.0 1524.0 901.0 1099.0 809.0 1719.0 1896.0 2266.0 336.0 348.0 197.0 1854.0 1875.0 835.0 953.0 1120.0 1550.0 1269.0 1011.0 179.0 933.0 890.0 1517.0 1812.0 2191.0 1082.0 1001.0 442.0 1021.0 473.0 1121.0 1376.0 590.0 598.0 919.0 1084.0 833.0 3914.0 1278.0 3408.0 906.0 1275.0 1002.0 2260.0 1574.0 927.0 711.0 959.0 1195.0 1265.0 559.0 1058.0 1205.0 988.0 6512.0 995.0 1599.0 737.0 2619.0 690.0 1064.0 906.0 405.0 1003.0 520.0 1082.0 271.0 505.0 31.0 967.0 435.0 4530.0 1041.0 1116.0 268.0 867.0 34.0 384.0
2021-11-06 12:41:56,477 - mmdet - INFO - pseudo mining: 5373.0 13.0 535.0 42.0 45.0 54.0 40.0 13.0 40.0 112.0 40.0 135.0 0.0 3.0 7.0 39.0 9.0 31.0 113.0 16.0 158.0 4.0 143.0 194.0 5.0 70.0 1.0 20.0 3.0 41.0 7.0 0.0 162.0 156.0 21.0 40.0 14.0 14.0 127.0 183.0 9.0 99.0 2.0 3.0 0.0 63.0 16.0 26.0 7.0 15.0 33.0 14.0 0.0 25.0 1.0 0.0 12.0 1.0 53.0 4.0 29.0 107.0 110.0 37.0 38.0 10.0 19.0 16.0 12.0 5.0 0.0 24.0 1.0 14.0 390.0 9.0 1.0 39.0 0.0 0.0
2021-11-06 12:43:23,333 - mmdet - INFO - current percent: 0.2
2021-11-06 12:43:23,334 - mmdet - INFO - update score thr (positive): (1.00-person) (0.97-bicycle) (0.99-car) (0.99-motorcycle) (0.99-airplane) (0.99-bus) (0.99-train) (0.96-truck) (0.97-boat) (0.97-traffic light) (0.99-fire hydrant) (1.00-stop sign) (0.86-parking meter) (0.90-bench) (0.98-bird) (0.99-cat) (0.99-dog) (0.99-horse) (0.99-sheep) (0.96-cow) (1.00-elephant) (1.00-bear) (1.00-zebra) (1.00-giraffe) (0.88-backpack) (0.98-umbrella) (0.79-handbag) (0.96-tie) (0.90-suitcase) (0.99-frisbee) (0.92-skis) (0.67-snowboard) (0.99-sports ball) (0.98-kite) (0.96-baseball bat) (0.97-baseball glove) (0.99-skateboard) (0.97-surfboard) (1.00-tennis racket) (0.97-bottle) (0.98-wine glass) (0.97-cup) (0.86-fork) (0.89-knife) (0.82-spoon) (0.96-bowl) (0.96-banana) (0.90-apple) (0.99-sandwich) (0.98-orange) (0.96-broccoli) (0.93-carrot) (0.08-hot dog) (0.98-pizza) (0.95-donut) (0.94-cake) (0.89-chair) (0.97-couch) (0.97-potted plant) (0.96-bed) (0.96-dining table) (1.00-toilet) (0.99-tv) (0.99-laptop) (0.99-mouse) (0.84-remote) (0.99-keyboard) (0.97-cell phone) (0.98-microwave) (0.95-oven) (0.05-toaster) (0.99-sink) (0.97-refrigerator) (0.90-book) (1.00-clock) (0.97-vase) (0.72-scissors) (1.00-teddy bear) (0.05-hair drier) (0.78-toothbrush)
2021-11-06 12:43:23,334 - mmdet - INFO - update score thr (ignore): (0.32-person) (0.21-bicycle) (0.37-car) (0.30-motorcycle) (0.54-airplane) (0.37-bus) (0.50-train) (0.39-truck) (0.39-boat) (0.37-traffic light) (0.29-fire hydrant) (0.75-stop sign) (0.13-parking meter) (0.26-bench) (0.17-bird) (0.54-cat) (0.47-dog) (0.43-horse) (0.64-sheep) (0.40-cow) (0.50-elephant) (0.49-bear) (0.18-zebra) (0.15-giraffe) (0.34-backpack) (0.40-umbrella) (0.25-handbag) (0.33-tie) (0.20-suitcase) (0.50-frisbee) (0.34-skis) (0.25-snowboard) (0.33-sports ball) (0.58-kite) (0.37-baseball bat) (0.46-baseball glove) (0.42-skateboard) (0.34-surfboard) (0.43-tennis racket) (0.36-bottle) (0.20-wine glass) (0.27-cup) (0.15-fork) (0.41-knife) (0.28-spoon) (0.33-bowl) (0.32-banana) (0.37-apple) (0.92-sandwich) (0.66-orange) (0.38-broccoli) (0.53-carrot) (0.05-hot dog) (0.40-pizza) (0.52-donut) (0.38-cake) (0.25-chair) (0.56-couch) (0.41-potted plant) (0.53-bed) (0.45-dining table) (0.68-toilet) (0.54-tv) (0.42-laptop) (0.64-mouse) (0.26-remote) (0.43-keyboard) (0.40-cell phone) (0.44-microwave) (0.36-oven) (0.05-toaster) (0.37-sink) (0.48-refrigerator) (0.37-book) (0.43-clock) (0.26-vase) (0.18-scissors) (0.81-teddy bear) (0.05-hair drier) (0.24-toothbrush)
2021-11-06 12:43:23,741 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 12:43:23,742 - mmdet - INFO - Iter [5000/40000] lr: 2.000e-02, eta: 18:25:14, time: 1.678, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0210, loss_rpn_bbox: 0.0426, loss_cls: 0.1408, acc: 94.5990, loss_bbox: 0.2319, loss_rpn_cls_unlabeled: 0.0966, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.2020, acc_unlabeled: 91.1006, loss_bbox_unlabeled: 0.2061, losses_cls_ig_unlabeled: 0.1546, pseudo_num: 2.0160, pseudo_num_ig: 6.4448, pseudo_num_mining: 0.4617, pseudo_num(acc): 0.6302, pseudo_num ig(acc): 0.3482, loss: 1.2017
2021-11-06 12:44:47,417 - mmdet - INFO - Iter [5050/40000] lr: 2.000e-02, eta: 18:32:16, time: 3.388, data_time: 1.742, memory: 26488, loss_rpn_cls: 0.0222, loss_rpn_bbox: 0.0450, loss_cls: 0.1392, acc: 94.6161, loss_bbox: 0.2366, loss_rpn_cls_unlabeled: 0.1048, loss_rpn_bbox_unlabeled: 0.1049, loss_cls_unlabeled: 0.1810, acc_unlabeled: 91.1689, loss_bbox_unlabeled: 0.1820, losses_cls_ig_unlabeled: 0.1669, pseudo_num: 2.0129, pseudo_num_ig: 6.4374, pseudo_num_mining: 0.4633, pseudo_num(acc): 0.6313, pseudo_num ig(acc): 0.3486, loss: 1.1826
2021-11-06 12:46:11,366 - mmdet - INFO - Iter [5100/40000] lr: 2.000e-02, eta: 18:29:22, time: 1.679, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0222, loss_rpn_bbox: 0.0457, loss_cls: 0.1439, acc: 94.4634, loss_bbox: 0.2382, loss_rpn_cls_unlabeled: 0.0987, loss_rpn_bbox_unlabeled: 0.1045, loss_cls_unlabeled: 0.1783, acc_unlabeled: 91.1191, loss_bbox_unlabeled: 0.1777, losses_cls_ig_unlabeled: 0.1660, pseudo_num: 2.0083, pseudo_num_ig: 6.4321, pseudo_num_mining: 0.4653, pseudo_num(acc): 0.6327, pseudo_num ig(acc): 0.3491, loss: 1.1752
2021-11-06 12:47:33,605 - mmdet - INFO - Iter [5150/40000] lr: 2.000e-02, eta: 18:26:18, time: 1.645, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0217, loss_rpn_bbox: 0.0474, loss_cls: 0.1431, acc: 94.4291, loss_bbox: 0.2408, loss_rpn_cls_unlabeled: 0.0983, loss_rpn_bbox_unlabeled: 0.1042, loss_cls_unlabeled: 0.1777, acc_unlabeled: 90.9884, loss_bbox_unlabeled: 0.1830, losses_cls_ig_unlabeled: 0.1669, pseudo_num: 2.0036, pseudo_num_ig: 6.4282, pseudo_num_mining: 0.4674, pseudo_num(acc): 0.6341, pseudo_num ig(acc): 0.3495, loss: 1.1830
2021-11-06 12:48:57,177 - mmdet - INFO - Iter [5200/40000] lr: 2.000e-02, eta: 18:23:23, time: 1.668, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0220, loss_rpn_bbox: 0.0470, loss_cls: 0.1414, acc: 94.5305, loss_bbox: 0.2425, loss_rpn_cls_unlabeled: 0.0995, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.1803, acc_unlabeled: 91.0348, loss_bbox_unlabeled: 0.1805, losses_cls_ig_unlabeled: 0.1706, pseudo_num: 1.9992, pseudo_num_ig: 6.4241, pseudo_num_mining: 0.4693, pseudo_num(acc): 0.6356, pseudo_num ig(acc): 0.3500, loss: 1.1900
2021-11-06 12:50:21,113 - mmdet - INFO - Iter [5250/40000] lr: 2.000e-02, eta: 18:20:35, time: 1.681, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0229, loss_rpn_bbox: 0.0463, loss_cls: 0.1448, acc: 94.4220, loss_bbox: 0.2377, loss_rpn_cls_unlabeled: 0.1059, loss_rpn_bbox_unlabeled: 0.1079, loss_cls_unlabeled: 0.1888, acc_unlabeled: 91.0446, loss_bbox_unlabeled: 0.1847, losses_cls_ig_unlabeled: 0.1667, pseudo_num: 1.9950, pseudo_num_ig: 6.4190, pseudo_num_mining: 0.4714, pseudo_num(acc): 0.6371, pseudo_num ig(acc): 0.3505, loss: 1.2057
2021-11-06 12:51:44,897 - mmdet - INFO - Iter [5300/40000] lr: 2.000e-02, eta: 18:17:46, time: 1.675, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0223, loss_rpn_bbox: 0.0479, loss_cls: 0.1471, acc: 94.2975, loss_bbox: 0.2498, loss_rpn_cls_unlabeled: 0.1004, loss_rpn_bbox_unlabeled: 0.1055, loss_cls_unlabeled: 0.1826, acc_unlabeled: 91.1198, loss_bbox_unlabeled: 0.1761, losses_cls_ig_unlabeled: 0.1682, pseudo_num: 1.9905, pseudo_num_ig: 6.4137, pseudo_num_mining: 0.4733, pseudo_num(acc): 0.6383, pseudo_num ig(acc): 0.3509, loss: 1.1999
2021-11-06 12:53:08,979 - mmdet - INFO - Iter [5350/40000] lr: 2.000e-02, eta: 18:15:01, time: 1.682, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0217, loss_rpn_bbox: 0.0438, loss_cls: 0.1392, acc: 94.6443, loss_bbox: 0.2322, loss_rpn_cls_unlabeled: 0.1013, loss_rpn_bbox_unlabeled: 0.1072, loss_cls_unlabeled: 0.1878, acc_unlabeled: 90.8733, loss_bbox_unlabeled: 0.1843, losses_cls_ig_unlabeled: 0.1710, pseudo_num: 1.9860, pseudo_num_ig: 6.4085, pseudo_num_mining: 0.4748, pseudo_num(acc): 0.6395, pseudo_num ig(acc): 0.3513, loss: 1.1884
2021-11-06 12:54:34,555 - mmdet - INFO - Iter [5400/40000] lr: 2.000e-02, eta: 18:12:27, time: 1.711, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0211, loss_rpn_bbox: 0.0451, loss_cls: 0.1411, acc: 94.5177, loss_bbox: 0.2409, loss_rpn_cls_unlabeled: 0.1004, loss_rpn_bbox_unlabeled: 0.1027, loss_cls_unlabeled: 0.1754, acc_unlabeled: 91.4314, loss_bbox_unlabeled: 0.1776, losses_cls_ig_unlabeled: 0.1595, pseudo_num: 1.9821, pseudo_num_ig: 6.4051, pseudo_num_mining: 0.4767, pseudo_num(acc): 0.6407, pseudo_num ig(acc): 0.3518, loss: 1.1639
2021-11-06 12:55:59,482 - mmdet - INFO - Iter [5450/40000] lr: 2.000e-02, eta: 18:09:51, time: 1.700, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0214, loss_rpn_bbox: 0.0457, loss_cls: 0.1406, acc: 94.5764, loss_bbox: 0.2369, loss_rpn_cls_unlabeled: 0.1007, loss_rpn_bbox_unlabeled: 0.1032, loss_cls_unlabeled: 0.1830, acc_unlabeled: 91.1757, loss_bbox_unlabeled: 0.1760, losses_cls_ig_unlabeled: 0.1649, pseudo_num: 1.9778, pseudo_num_ig: 6.3982, pseudo_num_mining: 0.4784, pseudo_num(acc): 0.6420, pseudo_num ig(acc): 0.3522, loss: 1.1723
2021-11-06 12:57:22,271 - mmdet - INFO - pseudo pos: 0.98(10235.0-person) 0.84(294.0-bicycle) 0.91(1778.0-car) 0.94(324.0-motorcycle) 0.96(150.0-airplane) 0.98(250.0-bus) 0.97(219.0-train) 0.65(395.0-truck) 0.58(447.0-boat) 0.84(625.0-traffic light) 0.98(93.0-fire hydrant) 1.00(88.0-stop sign) 0.51(89.0-parking meter) 0.53(392.0-bench) 0.86(352.0-bird) 0.92(223.0-cat) 0.89(226.0-dog) 0.91(324.0-horse) 0.95(219.0-sheep) 0.72(427.0-cow) 0.99(153.0-elephant) 1.00(45.0-bear) 0.99(283.0-zebra) 0.99(285.0-giraffe) 0.36(350.0-backpack) 0.77(480.0-umbrella) 0.37(575.0-handbag) 0.75(290.0-tie) 0.54(287.0-suitcase) 0.89(108.0-frisbee) 0.45(315.0-skis) 0.06(570.0-snowboard) 0.95(236.0-sports ball) 0.74(370.0-kite) 0.78(139.0-baseball bat) 0.63(226.0-baseball glove) 0.90(223.0-skateboard) 0.78(258.0-surfboard) 0.94(157.0-tennis racket) 0.80(877.0-bottle) 0.84(256.0-wine glass) 0.78(982.0-cup) 0.26(222.0-fork) 0.22(499.0-knife) 0.23(312.0-spoon) 0.69(866.0-bowl) 0.53(405.0-banana) 0.21(694.0-apple) 0.22(992.0-sandwich) 0.24(491.0-orange) 0.68(277.0-broccoli) 0.40(339.0-carrot) 0.02(4769.0-hot dog) 0.92(250.0-pizza) 0.53(434.0-donut) 0.43(333.0-cake) 0.52(2199.0-chair) 0.58(263.0-couch) 0.63(462.0-potted plant) 0.82(195.0-bed) 0.65(909.0-dining table) 0.90(176.0-toilet) 0.90(266.0-tv) 0.93(214.0-laptop) 0.92(49.0-mouse) 0.47(219.0-remote) 0.77(132.0-keyboard) 0.58(315.0-cell phone) 0.89(93.0-microwave) 0.63(238.0-oven) 0.00(0.0-toaster) 0.76(287.0-sink) 0.77(135.0-refrigerator) 0.20(1035.0-book) 0.95(192.0-clock) 0.77(264.0-vase) 0.55(58.0-scissors) 0.93(128.0-teddy bear) 0.00(0.0-hair drier) 0.15(176.0-toothbrush)
2021-11-06 12:57:22,719 - mmdet - INFO - pseudo ig: 0.57(38890.0-person) 0.29(1109.0-bicycle) 0.42(7007.0-car) 0.48(1252.0-motorcycle) 0.67(410.0-airplane) 0.56(895.0-bus) 0.46(772.0-train) 0.30(1446.0-truck) 0.27(1926.0-boat) 0.22(2830.0-traffic light) 0.53(270.0-fire hydrant) 0.45(362.0-stop sign) 0.14(261.0-parking meter) 0.16(1652.0-bench) 0.33(1046.0-bird) 0.63(755.0-cat) 0.58(633.0-dog) 0.44(1020.0-horse) 0.57(849.0-sheep) 0.26(1609.0-cow) 0.77(625.0-elephant) 0.47(178.0-bear) 0.47(1178.0-zebra) 0.69(869.0-giraffe) 0.17(1355.0-backpack) 0.31(1638.0-umbrella) 0.12(2125.0-handbag) 0.21(1310.0-tie) 0.17(1030.0-suitcase) 0.31(483.0-frisbee) 0.23(1120.0-skis) 0.06(638.0-snowboard) 0.32(1014.0-sports ball) 0.27(1446.0-kite) 0.23(470.0-baseball bat) 0.15(962.0-baseball glove) 0.33(795.0-skateboard) 0.32(954.0-surfboard) 0.52(616.0-tennis racket) 0.29(3743.0-bottle) 0.32(989.0-wine glass) 0.25(3962.0-cup) 0.14(746.0-fork) 0.09(1771.0-knife) 0.07(1412.0-spoon) 0.23(3354.0-bowl) 0.18(1698.0-banana) 0.07(1503.0-apple) 0.11(1273.0-sandwich) 0.16(592.0-orange) 0.28(1264.0-broccoli) 0.13(1612.0-carrot) 0.04(50.0-hot dog) 0.46(863.0-pizza) 0.18(1669.0-donut) 0.15(1029.0-cake) 0.17(9575.0-chair) 0.24(927.0-couch) 0.23(1930.0-potted plant) 0.38(698.0-bed) 0.26(2534.0-dining table) 0.57(592.0-toilet) 0.42(986.0-tv) 0.41(711.0-laptop) 0.44(209.0-mouse) 0.16(885.0-remote) 0.40(438.0-keyboard) 0.19(1254.0-cell phone) 0.29(279.0-microwave) 0.16(637.0-oven) 0.00(0.0-toaster) 0.30(952.0-sink) 0.26(423.0-refrigerator) 0.14(4173.0-book) 0.55(931.0-clock) 0.31(861.0-vase) 0.21(234.0-scissors) 0.56(500.0-teddy bear) 0.00(0.0-hair drier) 0.05(478.0-toothbrush)
2021-11-06 12:57:22,719 - mmdet - INFO - pseudo gt: 48621.0 1327.0 8473.0 1689.0 988.0 1207.0 884.0 1903.0 2031.0 2500.0 368.0 383.0 217.0 2035.0 2051.0 931.0 1027.0 1263.0 1758.0 1394.0 1071.0 195.0 1018.0 995.0 1691.0 2068.0 2433.0 1204.0 1120.0 483.0 1161.0 513.0 1228.0 1504.0 647.0 667.0 1012.0 1169.0 920.0 4250.0 1453.0 3683.0 981.0 1378.0 1103.0 2508.0 1763.0 1014.0 784.0 1077.0 1351.0 1374.0 618.0 1155.0 1263.0 1107.0 7278.0 1094.0 1748.0 825.0 2895.0 770.0 1169.0 966.0 437.0 1093.0 570.0 1196.0 302.0 553.0 34.0 1046.0 477.0 5018.0 1173.0 1204.0 306.0 964.0 37.0 425.0
2021-11-06 12:57:22,719 - mmdet - INFO - pseudo mining: 6045.0 21.0 625.0 50.0 49.0 61.0 45.0 14.0 46.0 132.0 45.0 154.0 0.0 3.0 11.0 55.0 14.0 43.0 131.0 21.0 172.0 11.0 163.0 227.0 6.0 90.0 1.0 25.0 3.0 50.0 10.0 0.0 185.0 188.0 23.0 46.0 20.0 17.0 141.0 207.0 11.0 120.0 2.0 3.0 0.0 75.0 21.0 27.0 16.0 22.0 36.0 17.0 0.0 29.0 8.0 0.0 14.0 2.0 61.0 5.0 31.0 118.0 121.0 41.0 43.0 11.0 21.0 19.0 13.0 5.0 0.0 26.0 1.0 16.0 447.0 11.0 2.0 48.0 0.0 0.0
2021-11-06 12:57:24,163 - mmdet - INFO - Iter [5500/40000] lr: 2.000e-02, eta: 18:07:14, time: 1.693, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0214, loss_rpn_bbox: 0.0465, loss_cls: 0.1435, acc: 94.4633, loss_bbox: 0.2397, loss_rpn_cls_unlabeled: 0.0913, loss_rpn_bbox_unlabeled: 0.1025, loss_cls_unlabeled: 0.1846, acc_unlabeled: 90.8900, loss_bbox_unlabeled: 0.1853, losses_cls_ig_unlabeled: 0.1683, pseudo_num: 1.9741, pseudo_num_ig: 6.3927, pseudo_num_mining: 0.4797, pseudo_num(acc): 0.6430, pseudo_num ig(acc): 0.3525, loss: 1.1831
2021-11-06 12:58:48,276 - mmdet - INFO - Iter [5550/40000] lr: 2.000e-02, eta: 18:04:35, time: 1.683, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0197, loss_rpn_bbox: 0.0469, loss_cls: 0.1357, acc: 94.7834, loss_bbox: 0.2275, loss_rpn_cls_unlabeled: 0.0958, loss_rpn_bbox_unlabeled: 0.1005, loss_cls_unlabeled: 0.1898, acc_unlabeled: 91.2224, loss_bbox_unlabeled: 0.1864, losses_cls_ig_unlabeled: 0.1623, pseudo_num: 1.9707, pseudo_num_ig: 6.3861, pseudo_num_mining: 0.4811, pseudo_num(acc): 0.6440, pseudo_num ig(acc): 0.3529, loss: 1.1647
2021-11-06 13:00:12,925 - mmdet - INFO - Iter [5600/40000] lr: 2.000e-02, eta: 18:01:58, time: 1.688, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0202, loss_rpn_bbox: 0.0455, loss_cls: 0.1420, acc: 94.5126, loss_bbox: 0.2382, loss_rpn_cls_unlabeled: 0.0924, loss_rpn_bbox_unlabeled: 0.1027, loss_cls_unlabeled: 0.1992, acc_unlabeled: 91.0914, loss_bbox_unlabeled: 0.1997, losses_cls_ig_unlabeled: 0.1608, pseudo_num: 1.9683, pseudo_num_ig: 6.3789, pseudo_num_mining: 0.4822, pseudo_num(acc): 0.6448, pseudo_num ig(acc): 0.3532, loss: 1.2008
2021-11-06 13:01:38,107 - mmdet - INFO - Iter [5650/40000] lr: 2.000e-02, eta: 17:59:29, time: 1.707, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0217, loss_rpn_bbox: 0.0475, loss_cls: 0.1389, acc: 94.6345, loss_bbox: 0.2338, loss_rpn_cls_unlabeled: 0.0953, loss_rpn_bbox_unlabeled: 0.1051, loss_cls_unlabeled: 0.2008, acc_unlabeled: 91.0884, loss_bbox_unlabeled: 0.1992, losses_cls_ig_unlabeled: 0.1593, pseudo_num: 1.9661, pseudo_num_ig: 6.3731, pseudo_num_mining: 0.4836, pseudo_num(acc): 0.6454, pseudo_num ig(acc): 0.3535, loss: 1.2017
2021-11-06 13:03:03,469 - mmdet - INFO - Iter [5700/40000] lr: 2.000e-02, eta: 17:57:02, time: 1.709, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0217, loss_rpn_bbox: 0.0446, loss_cls: 0.1410, acc: 94.5238, loss_bbox: 0.2373, loss_rpn_cls_unlabeled: 0.0932, loss_rpn_bbox_unlabeled: 0.1100, loss_cls_unlabeled: 0.2156, acc_unlabeled: 90.9127, loss_bbox_unlabeled: 0.2170, losses_cls_ig_unlabeled: 0.1563, pseudo_num: 1.9650, pseudo_num_ig: 6.3678, pseudo_num_mining: 0.4848, pseudo_num(acc): 0.6457, pseudo_num ig(acc): 0.3538, loss: 1.2367
2021-11-06 13:04:28,787 - mmdet - INFO - Iter [5750/40000] lr: 2.000e-02, eta: 17:54:34, time: 1.705, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0215, loss_rpn_bbox: 0.0469, loss_cls: 0.1411, acc: 94.6084, loss_bbox: 0.2344, loss_rpn_cls_unlabeled: 0.1034, loss_rpn_bbox_unlabeled: 0.1083, loss_cls_unlabeled: 0.2192, acc_unlabeled: 90.9031, loss_bbox_unlabeled: 0.2247, losses_cls_ig_unlabeled: 0.1581, pseudo_num: 1.9657, pseudo_num_ig: 6.3638, pseudo_num_mining: 0.4864, pseudo_num(acc): 0.6456, pseudo_num ig(acc): 0.3541, loss: 1.2578
2021-11-06 13:05:52,071 - mmdet - INFO - Iter [5800/40000] lr: 2.000e-02, eta: 17:51:56, time: 1.667, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0219, loss_rpn_bbox: 0.0471, loss_cls: 0.1472, acc: 94.3995, loss_bbox: 0.2391, loss_rpn_cls_unlabeled: 0.0974, loss_rpn_bbox_unlabeled: 0.1095, loss_cls_unlabeled: 0.2324, acc_unlabeled: 90.8530, loss_bbox_unlabeled: 0.2368, losses_cls_ig_unlabeled: 0.1496, pseudo_num: 1.9677, pseudo_num_ig: 6.3600, pseudo_num_mining: 0.4876, pseudo_num(acc): 0.6451, pseudo_num ig(acc): 0.3544, loss: 1.2810
2021-11-06 13:07:15,687 - mmdet - INFO - Iter [5850/40000] lr: 2.000e-02, eta: 17:49:22, time: 1.673, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0208, loss_rpn_bbox: 0.0459, loss_cls: 0.1463, acc: 94.4309, loss_bbox: 0.2380, loss_rpn_cls_unlabeled: 0.0977, loss_rpn_bbox_unlabeled: 0.1120, loss_cls_unlabeled: 0.2391, acc_unlabeled: 90.5410, loss_bbox_unlabeled: 0.2472, losses_cls_ig_unlabeled: 0.1569, pseudo_num: 1.9702, pseudo_num_ig: 6.3541, pseudo_num_mining: 0.4884, pseudo_num(acc): 0.6444, pseudo_num ig(acc): 0.3546, loss: 1.3039
2021-11-06 13:08:40,920 - mmdet - INFO - Iter [5900/40000] lr: 2.000e-02, eta: 17:46:57, time: 1.704, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0238, loss_rpn_bbox: 0.0498, loss_cls: 0.1499, acc: 94.2760, loss_bbox: 0.2401, loss_rpn_cls_unlabeled: 0.1115, loss_rpn_bbox_unlabeled: 0.1260, loss_cls_unlabeled: 0.2549, acc_unlabeled: 90.4791, loss_bbox_unlabeled: 0.2618, losses_cls_ig_unlabeled: 0.1543, pseudo_num: 1.9750, pseudo_num_ig: 6.3516, pseudo_num_mining: 0.4897, pseudo_num(acc): 0.6429, pseudo_num ig(acc): 0.3548, loss: 1.3722
2021-11-06 13:10:05,407 - mmdet - INFO - Iter [5950/40000] lr: 2.000e-02, eta: 17:44:30, time: 1.690, data_time: 0.026, memory: 26488, loss_rpn_cls: 0.0231, loss_rpn_bbox: 0.0477, loss_cls: 0.1493, acc: 94.2767, loss_bbox: 0.2358, loss_rpn_cls_unlabeled: 0.1036, loss_rpn_bbox_unlabeled: 0.1209, loss_cls_unlabeled: 0.2655, acc_unlabeled: 90.4023, loss_bbox_unlabeled: 0.2889, losses_cls_ig_unlabeled: 0.1438, pseudo_num: 1.9821, pseudo_num_ig: 6.3490, pseudo_num_mining: 0.4908, pseudo_num(acc): 0.6408, pseudo_num ig(acc): 0.3550, loss: 1.3785
2021-11-06 13:11:28,729 - mmdet - INFO - pseudo pos: 0.98(11173.0-person) 0.85(313.0-bicycle) 0.91(1972.0-car) 0.94(361.0-motorcycle) 0.96(161.0-airplane) 0.98(275.0-bus) 0.97(246.0-train) 0.65(421.0-truck) 0.58(485.0-boat) 0.85(684.0-traffic light) 0.98(105.0-fire hydrant) 1.00(93.0-stop sign) 0.53(93.0-parking meter) 0.53(424.0-bench) 0.86(385.0-bird) 0.92(241.0-cat) 0.89(244.0-dog) 0.92(344.0-horse) 0.96(247.0-sheep) 0.73(450.0-cow) 0.99(157.0-elephant) 1.00(50.0-bear) 0.99(310.0-zebra) 0.99(314.0-giraffe) 0.36(387.0-backpack) 0.77(509.0-umbrella) 0.37(610.0-handbag) 0.75(318.0-tie) 0.55(309.0-suitcase) 0.89(111.0-frisbee) 0.46(333.0-skis) 0.07(592.0-snowboard) 0.95(256.0-sports ball) 0.73(411.0-kite) 0.77(154.0-baseball bat) 0.65(243.0-baseball glove) 0.90(230.0-skateboard) 0.77(273.0-surfboard) 0.94(169.0-tennis racket) 0.80(957.0-bottle) 0.85(277.0-wine glass) 0.78(1055.0-cup) 0.27(229.0-fork) 0.23(525.0-knife) 0.23(330.0-spoon) 0.68(961.0-bowl) 0.54(427.0-banana) 0.22(713.0-apple) 0.22(992.0-sandwich) 0.24(498.0-orange) 0.68(310.0-broccoli) 0.41(354.0-carrot) 0.02(6110.0-hot dog) 0.92(266.0-pizza) 0.55(451.0-donut) 0.43(354.0-cake) 0.53(2365.0-chair) 0.58(270.0-couch) 0.63(485.0-potted plant) 0.83(215.0-bed) 0.66(989.0-dining table) 0.91(192.0-toilet) 0.90(286.0-tv) 0.93(232.0-laptop) 0.93(54.0-mouse) 0.48(238.0-remote) 0.76(143.0-keyboard) 0.58(331.0-cell phone) 0.90(102.0-microwave) 0.64(258.0-oven) 0.00(0.0-toaster) 0.76(314.0-sink) 0.78(145.0-refrigerator) 0.21(1109.0-book) 0.95(202.0-clock) 0.78(276.0-vase) 0.53(78.0-scissors) 0.93(131.0-teddy bear) 0.00(0.0-hair drier) 0.15(178.0-toothbrush)
2021-11-06 13:11:28,729 - mmdet - INFO - pseudo ig: 0.57(42329.0-person) 0.29(1215.0-bicycle) 0.43(7601.0-car) 0.47(1381.0-motorcycle) 0.67(455.0-airplane) 0.57(976.0-bus) 0.47(825.0-train) 0.30(1595.0-truck) 0.27(2059.0-boat) 0.23(3030.0-traffic light) 0.49(296.0-fire hydrant) 0.45(396.0-stop sign) 0.15(283.0-parking meter) 0.16(1763.0-bench) 0.32(1131.0-bird) 0.64(824.0-cat) 0.59(695.0-dog) 0.45(1112.0-horse) 0.58(908.0-sheep) 0.27(1764.0-cow) 0.77(654.0-elephant) 0.48(195.0-bear) 0.47(1228.0-zebra) 0.69(944.0-giraffe) 0.16(1506.0-backpack) 0.32(1744.0-umbrella) 0.12(2248.0-handbag) 0.22(1388.0-tie) 0.17(1125.0-suitcase) 0.33(528.0-frisbee) 0.23(1229.0-skis) 0.06(685.0-snowboard) 0.31(1104.0-sports ball) 0.28(1541.0-kite) 0.23(511.0-baseball bat) 0.16(1008.0-baseball glove) 0.36(850.0-skateboard) 0.32(1025.0-surfboard) 0.53(658.0-tennis racket) 0.29(4077.0-bottle) 0.33(1065.0-wine glass) 0.26(4360.0-cup) 0.14(789.0-fork) 0.09(1877.0-knife) 0.07(1499.0-spoon) 0.23(3705.0-bowl) 0.19(1837.0-banana) 0.08(1573.0-apple) 0.11(1276.0-sandwich) 0.17(654.0-orange) 0.27(1388.0-broccoli) 0.14(1701.0-carrot) 0.00(479.0-hot dog) 0.46(930.0-pizza) 0.19(1712.0-donut) 0.16(1110.0-cake) 0.17(10153.0-chair) 0.25(992.0-couch) 0.23(2067.0-potted plant) 0.38(760.0-bed) 0.26(2753.0-dining table) 0.58(664.0-toilet) 0.42(1066.0-tv) 0.42(765.0-laptop) 0.43(221.0-mouse) 0.16(942.0-remote) 0.40(476.0-keyboard) 0.19(1365.0-cell phone) 0.31(310.0-microwave) 0.16(715.0-oven) 0.00(0.0-toaster) 0.31(1051.0-sink) 0.26(450.0-refrigerator) 0.14(4455.0-book) 0.55(1064.0-clock) 0.32(934.0-vase) 0.20(257.0-scissors) 0.57(528.0-teddy bear) 0.00(0.0-hair drier) 0.05(495.0-toothbrush)
2021-11-06 13:11:28,870 - mmdet - INFO - pseudo gt: 53022.0 1415.0 9227.0 1884.0 1092.0 1335.0 965.0 2076.0 2193.0 2766.0 390.0 422.0 235.0 2176.0 2183.0 1019.0 1133.0 1420.0 1902.0 1514.0 1109.0 216.0 1086.0 1082.0 1834.0 2272.0 2593.0 1324.0 1215.0 547.0 1276.0 548.0 1349.0 1645.0 702.0 711.0 1111.0 1246.0 1003.0 4633.0 1598.0 4061.0 1080.0 1514.0 1206.0 2749.0 1932.0 1130.0 856.0 1182.0 1479.0 1531.0 651.0 1248.0 1370.0 1198.0 7901.0 1180.0 1897.0 904.0 3164.0 871.0 1240.0 1052.0 464.0 1185.0 605.0 1300.0 332.0 613.0 39.0 1155.0 516.0 5439.0 1289.0 1294.0 330.0 1045.0 39.0 481.0
2021-11-06 13:11:28,870 - mmdet - INFO - pseudo mining: 6704.0 24.0 707.0 53.0 55.0 74.0 50.0 16.0 53.0 159.0 46.0 176.0 0.0 4.0 11.0 69.0 15.0 48.0 145.0 25.0 186.0 16.0 173.0 246.0 7.0 98.0 1.0 31.0 3.0 58.0 10.0 0.0 205.0 218.0 25.0 52.0 28.0 18.0 155.0 236.0 14.0 145.0 2.0 4.0 1.0 92.0 24.0 27.0 16.0 40.0 41.0 20.0 0.0 35.0 10.0 3.0 15.0 3.0 69.0 6.0 33.0 148.0 132.0 49.0 48.0 11.0 24.0 22.0 14.0 6.0 0.0 35.0 2.0 17.0 505.0 11.0 2.0 53.0 0.0 0.0
2021-11-06 13:12:22,756 - mmdet - INFO - Evaluating bbox...
2021-11-06 13:13:27,565 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.366 | bicycle | 0.123 | car | 0.265 |
| motorcycle | 0.184 | airplane | 0.227 | bus | 0.381 |
| train | 0.303 | truck | 0.140 | boat | 0.095 |
| traffic light | 0.164 | fire hydrant | 0.380 | stop sign | 0.448 |
| parking meter | 0.254 | bench | 0.093 | bird | 0.134 |
| cat | 0.339 | dog | 0.324 | horse | 0.324 |
| sheep | 0.256 | cow | 0.287 | elephant | 0.338 |
| bear | 0.428 | zebra | 0.383 | giraffe | 0.456 |
| backpack | 0.037 | umbrella | 0.145 | handbag | 0.030 |
| tie | 0.136 | suitcase | 0.071 | frisbee | 0.313 |
| skis | 0.034 | snowboard | 0.026 | sports ball | 0.291 |
| kite | 0.181 | baseball bat | 0.085 | baseball glove | 0.176 |
| skateboard | 0.183 | surfboard | 0.098 | tennis racket | 0.184 |
| bottle | 0.187 | wine glass | 0.138 | cup | 0.225 |
| fork | 0.013 | knife | 0.020 | spoon | 0.012 |
| bowl | 0.194 | banana | 0.075 | apple | 0.063 |
| sandwich | 0.105 | orange | 0.130 | broccoli | 0.113 |
| carrot | 0.055 | hot dog | 0.008 | pizza | 0.259 |
| donut | 0.142 | cake | 0.065 | chair | 0.083 |
| couch | 0.188 | potted plant | 0.102 | bed | 0.207 |
| dining table | 0.080 | toilet | 0.314 | tv | 0.325 |
| laptop | 0.304 | mouse | 0.324 | remote | 0.066 |
| keyboard | 0.194 | cell phone | 0.146 | microwave | 0.330 |
| oven | 0.143 | toaster | 0.008 | sink | 0.148 |
| refrigerator | 0.224 | book | 0.020 | clock | 0.374 |
| vase | 0.185 | scissors | 0.044 | teddy bear | 0.190 |
| hair drier | 0.000 | toothbrush | 0.029 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 13:14:22,739 - mmdet - INFO - Evaluating bbox...
2021-11-06 13:15:30,512 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.385 | bicycle | 0.167 | car | 0.287 |
| motorcycle | 0.225 | airplane | 0.283 | bus | 0.432 |
| train | 0.355 | truck | 0.145 | boat | 0.115 |
| traffic light | 0.192 | fire hydrant | 0.420 | stop sign | 0.486 |
| parking meter | 0.276 | bench | 0.103 | bird | 0.158 |
| cat | 0.390 | dog | 0.348 | horse | 0.360 |
| sheep | 0.277 | cow | 0.292 | elephant | 0.397 |
| bear | 0.478 | zebra | 0.424 | giraffe | 0.472 |
| backpack | 0.048 | umbrella | 0.166 | handbag | 0.041 |
| tie | 0.154 | suitcase | 0.086 | frisbee | 0.357 |
| skis | 0.061 | snowboard | 0.051 | sports ball | 0.311 |
| kite | 0.208 | baseball bat | 0.099 | baseball glove | 0.218 |
| skateboard | 0.231 | surfboard | 0.139 | tennis racket | 0.244 |
| bottle | 0.222 | wine glass | 0.170 | cup | 0.256 |
| fork | 0.027 | knife | 0.032 | spoon | 0.018 |
| bowl | 0.256 | banana | 0.081 | apple | 0.089 |
| sandwich | 0.134 | orange | 0.150 | broccoli | 0.125 |
| carrot | 0.055 | hot dog | 0.017 | pizza | 0.324 |
| donut | 0.191 | cake | 0.075 | chair | 0.105 |
| couch | 0.171 | potted plant | 0.118 | bed | 0.235 |
| dining table | 0.115 | toilet | 0.338 | tv | 0.352 |
| laptop | 0.324 | mouse | 0.350 | remote | 0.072 |
| keyboard | 0.233 | cell phone | 0.163 | microwave | 0.328 |
| oven | 0.158 | toaster | 0.019 | sink | 0.172 |
| refrigerator | 0.273 | book | 0.027 | clock | 0.376 |
| vase | 0.203 | scissors | 0.067 | teddy bear | 0.242 |
| hair drier | 0.000 | toothbrush | 0.044 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 13:16:54,500 - mmdet - INFO - current percent: 0.2
2021-11-06 13:16:54,500 - mmdet - INFO - update score thr (positive): (1.00-person) (0.98-bicycle) (0.99-car) (1.00-motorcycle) (0.99-airplane) (1.00-bus) (0.99-train) (0.96-truck) (0.96-boat) (0.98-traffic light) (1.00-fire hydrant) (1.00-stop sign) (0.98-parking meter) (0.93-bench) (0.97-bird) (0.99-cat) (0.99-dog) (0.99-horse) (0.99-sheep) (0.97-cow) (1.00-elephant) (0.99-bear) (0.99-zebra) (1.00-giraffe) (0.87-backpack) (0.99-umbrella) (0.73-handbag) (0.96-tie) (0.88-suitcase) (0.99-frisbee) (0.92-skis) (0.89-snowboard) (0.98-sports ball) (0.99-kite) (0.97-baseball bat) (0.99-baseball glove) (0.98-skateboard) (0.97-surfboard) (1.00-tennis racket) (0.98-bottle) (0.98-wine glass) (0.97-cup) (0.93-fork) (0.86-knife) (0.79-spoon) (0.97-bowl) (0.94-banana) (0.87-apple) (0.59-sandwich) (0.98-orange) (0.98-broccoli) (0.85-carrot) (0.95-hot dog) (0.98-pizza) (0.90-donut) (0.86-cake) (0.89-chair) (0.94-couch) (0.97-potted plant) (0.97-bed) (0.96-dining table) (1.00-toilet) (0.99-tv) (0.99-laptop) (1.00-mouse) (0.91-remote) (0.99-keyboard) (0.96-cell phone) (0.98-microwave) (0.97-oven) (0.05-toaster) (0.99-sink) (0.98-refrigerator) (0.88-book) (1.00-clock) (0.97-vase) (0.61-scissors) (0.99-teddy bear) (0.05-hair drier) (0.52-toothbrush)
2021-11-06 13:16:54,500 - mmdet - INFO - update score thr (ignore): (0.28-person) (0.31-bicycle) (0.38-car) (0.35-motorcycle) (0.64-airplane) (0.39-bus) (0.37-train) (0.46-truck) (0.31-boat) (0.42-traffic light) (0.52-fire hydrant) (0.83-stop sign) (0.24-parking meter) (0.27-bench) (0.17-bird) (0.59-cat) (0.51-dog) (0.51-horse) (0.60-sheep) (0.37-cow) (0.40-elephant) (0.62-bear) (0.22-zebra) (0.15-giraffe) (0.33-backpack) (0.27-umbrella) (0.20-handbag) (0.24-tie) (0.19-suitcase) (0.47-frisbee) (0.33-skis) (0.51-snowboard) (0.30-sports ball) (0.58-kite) (0.38-baseball bat) (0.54-baseball glove) (0.27-skateboard) (0.36-surfboard) (0.52-tennis racket) (0.34-bottle) (0.21-wine glass) (0.29-cup) (0.16-fork) (0.27-knife) (0.24-spoon) (0.37-bowl) (0.43-banana) (0.28-apple) (0.18-sandwich) (0.63-orange) (0.44-broccoli) (0.32-carrot) (0.93-hot dog) (0.26-pizza) (0.35-donut) (0.25-cake) (0.22-chair) (0.39-couch) (0.38-potted plant) (0.49-bed) (0.41-dining table) (0.55-toilet) (0.56-tv) (0.45-laptop) (0.65-mouse) (0.31-remote) (0.48-keyboard) (0.41-cell phone) (0.42-microwave) (0.42-oven) (0.05-toaster) (0.46-sink) (0.48-refrigerator) (0.27-book) (0.69-clock) (0.29-vase) (0.12-scissors) (0.71-teddy bear) (0.05-hair drier) (0.09-toothbrush)
2021-11-06 13:16:54,824 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 13:16:54,824 - mmdet - INFO - Iter [6000/40000] lr: 2.000e-02, eta: 17:42:07, time: 1.701, data_time: 0.027, memory: 26488, bbox_mAP: 0.2070, bbox_mAP_50: 0.3820, bbox_mAP_75: 0.2050, bbox_mAP_s: 0.1000, bbox_mAP_m: 0.2330, bbox_mAP_l: 0.2730, bbox_mAP_copypaste: 0.207 0.382 0.205 0.100 0.233 0.273, loss_rpn_cls: 0.0221, loss_rpn_bbox: 0.0462, loss_cls: 0.1529, acc: 94.2379, loss_bbox: 0.2346, loss_rpn_cls_unlabeled: 0.1087, loss_rpn_bbox_unlabeled: 0.1218, loss_cls_unlabeled: 0.2851, acc_unlabeled: 90.1927, loss_bbox_unlabeled: 0.2973, losses_cls_ig_unlabeled: 0.1498, pseudo_num: 1.9908, pseudo_num_ig: 6.3476, pseudo_num_mining: 0.4920, pseudo_num(acc): 0.6380, pseudo_num ig(acc): 0.3552, loss: 1.4186
2021-11-06 13:18:18,969 - mmdet - INFO - Iter [6050/40000] lr: 2.000e-02, eta: 18:09:59, time: 8.170, data_time: 6.513, memory: 26488, loss_rpn_cls: 0.0215, loss_rpn_bbox: 0.0454, loss_cls: 0.1391, acc: 94.6715, loss_bbox: 0.2341, loss_rpn_cls_unlabeled: 0.0967, loss_rpn_bbox_unlabeled: 0.1051, loss_cls_unlabeled: 0.1833, acc_unlabeled: 90.9863, loss_bbox_unlabeled: 0.1822, losses_cls_ig_unlabeled: 0.1704, pseudo_num: 1.9933, pseudo_num_ig: 6.3448, pseudo_num_mining: 0.4934, pseudo_num(acc): 0.6369, pseudo_num ig(acc): 0.3556, loss: 1.1778
2021-11-06 13:19:44,231 - mmdet - INFO - Iter [6100/40000] lr: 2.000e-02, eta: 18:07:20, time: 1.701, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0215, loss_rpn_bbox: 0.0463, loss_cls: 0.1380, acc: 94.6971, loss_bbox: 0.2337, loss_rpn_cls_unlabeled: 0.0969, loss_rpn_bbox_unlabeled: 0.1076, loss_cls_unlabeled: 0.1783, acc_unlabeled: 91.0046, loss_bbox_unlabeled: 0.1824, losses_cls_ig_unlabeled: 0.1691, pseudo_num: 1.9900, pseudo_num_ig: 6.3424, pseudo_num_mining: 0.4950, pseudo_num(acc): 0.6379, pseudo_num ig(acc): 0.3559, loss: 1.1738
2021-11-06 13:21:08,343 - mmdet - INFO - Iter [6150/40000] lr: 2.000e-02, eta: 18:04:38, time: 1.684, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0199, loss_rpn_bbox: 0.0454, loss_cls: 0.1343, acc: 94.7993, loss_bbox: 0.2312, loss_rpn_cls_unlabeled: 0.0928, loss_rpn_bbox_unlabeled: 0.1032, loss_cls_unlabeled: 0.1789, acc_unlabeled: 91.0038, loss_bbox_unlabeled: 0.1847, losses_cls_ig_unlabeled: 0.1662, pseudo_num: 1.9865, pseudo_num_ig: 6.3396, pseudo_num_mining: 0.4965, pseudo_num(acc): 0.6390, pseudo_num ig(acc): 0.3562, loss: 1.1567
2021-11-06 13:22:35,507 - mmdet - INFO - Iter [6200/40000] lr: 2.000e-02, eta: 18:02:14, time: 1.746, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0212, loss_rpn_bbox: 0.0458, loss_cls: 0.1339, acc: 94.7805, loss_bbox: 0.2346, loss_rpn_cls_unlabeled: 0.0972, loss_rpn_bbox_unlabeled: 0.1053, loss_cls_unlabeled: 0.1779, acc_unlabeled: 91.1462, loss_bbox_unlabeled: 0.1830, losses_cls_ig_unlabeled: 0.1627, pseudo_num: 1.9828, pseudo_num_ig: 6.3355, pseudo_num_mining: 0.4978, pseudo_num(acc): 0.6401, pseudo_num ig(acc): 0.3565, loss: 1.1616
2021-11-06 13:24:02,270 - mmdet - INFO - Iter [6250/40000] lr: 2.000e-02, eta: 17:59:47, time: 1.733, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0203, loss_rpn_bbox: 0.0449, loss_cls: 0.1330, acc: 94.8429, loss_bbox: 0.2299, loss_rpn_cls_unlabeled: 0.1011, loss_rpn_bbox_unlabeled: 0.1094, loss_cls_unlabeled: 0.1818, acc_unlabeled: 91.0649, loss_bbox_unlabeled: 0.1841, losses_cls_ig_unlabeled: 0.1633, pseudo_num: 1.9797, pseudo_num_ig: 6.3315, pseudo_num_mining: 0.4990, pseudo_num(acc): 0.6413, pseudo_num ig(acc): 0.3568, loss: 1.1677
2021-11-06 13:25:25,625 - mmdet - INFO - Iter [6300/40000] lr: 2.000e-02, eta: 17:57:04, time: 1.669, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0189, loss_rpn_bbox: 0.0462, loss_cls: 0.1319, acc: 94.8865, loss_bbox: 0.2302, loss_rpn_cls_unlabeled: 0.0946, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.1754, acc_unlabeled: 90.9724, loss_bbox_unlabeled: 0.1790, losses_cls_ig_unlabeled: 0.1643, pseudo_num: 1.9763, pseudo_num_ig: 6.3286, pseudo_num_mining: 0.5005, pseudo_num(acc): 0.6424, pseudo_num ig(acc): 0.3572, loss: 1.1465
2021-11-06 13:26:52,788 - mmdet - INFO - Iter [6350/40000] lr: 2.000e-02, eta: 17:54:41, time: 1.741, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0198, loss_rpn_bbox: 0.0449, loss_cls: 0.1314, acc: 94.9260, loss_bbox: 0.2289, loss_rpn_cls_unlabeled: 0.0927, loss_rpn_bbox_unlabeled: 0.1037, loss_cls_unlabeled: 0.1760, acc_unlabeled: 91.1694, loss_bbox_unlabeled: 0.1754, losses_cls_ig_unlabeled: 0.1603, pseudo_num: 1.9726, pseudo_num_ig: 6.3255, pseudo_num_mining: 0.5020, pseudo_num(acc): 0.6433, pseudo_num ig(acc): 0.3575, loss: 1.1331
2021-11-06 13:28:16,555 - mmdet - INFO - Iter [6400/40000] lr: 2.000e-02, eta: 17:52:03, time: 1.678, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0198, loss_rpn_bbox: 0.0456, loss_cls: 0.1321, acc: 94.8367, loss_bbox: 0.2266, loss_rpn_cls_unlabeled: 0.0970, loss_rpn_bbox_unlabeled: 0.1056, loss_cls_unlabeled: 0.1768, acc_unlabeled: 90.9927, loss_bbox_unlabeled: 0.1785, losses_cls_ig_unlabeled: 0.1640, pseudo_num: 1.9691, pseudo_num_ig: 6.3226, pseudo_num_mining: 0.5035, pseudo_num(acc): 0.6442, pseudo_num ig(acc): 0.3578, loss: 1.1460
2021-11-06 13:29:41,616 - mmdet - INFO - Iter [6450/40000] lr: 2.000e-02, eta: 17:49:32, time: 1.701, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0191, loss_rpn_bbox: 0.0427, loss_cls: 0.1275, acc: 95.0463, loss_bbox: 0.2262, loss_rpn_cls_unlabeled: 0.0983, loss_rpn_bbox_unlabeled: 0.1078, loss_cls_unlabeled: 0.1779, acc_unlabeled: 91.1813, loss_bbox_unlabeled: 0.1856, losses_cls_ig_unlabeled: 0.1568, pseudo_num: 1.9663, pseudo_num_ig: 6.3210, pseudo_num_mining: 0.5051, pseudo_num(acc): 0.6452, pseudo_num ig(acc): 0.3581, loss: 1.1420
2021-11-06 13:31:05,675 - mmdet - INFO - pseudo pos: 0.98(12188.0-person) 0.85(339.0-bicycle) 0.91(2099.0-car) 0.95(385.0-motorcycle) 0.97(174.0-airplane) 0.98(294.0-bus) 0.97(265.0-train) 0.66(456.0-truck) 0.59(514.0-boat) 0.85(718.0-traffic light) 0.98(118.0-fire hydrant) 1.00(97.0-stop sign) 0.55(97.0-parking meter) 0.54(450.0-bench) 0.87(412.0-bird) 0.93(265.0-cat) 0.90(267.0-dog) 0.92(360.0-horse) 0.95(261.0-sheep) 0.74(473.0-cow) 0.99(165.0-elephant) 1.00(54.0-bear) 0.99(349.0-zebra) 0.99(339.0-giraffe) 0.37(422.0-backpack) 0.77(563.0-umbrella) 0.36(681.0-handbag) 0.76(327.0-tie) 0.57(333.0-suitcase) 0.90(119.0-frisbee) 0.47(351.0-skis) 0.08(599.0-snowboard) 0.96(289.0-sports ball) 0.74(452.0-kite) 0.77(165.0-baseball bat) 0.67(256.0-baseball glove) 0.91(252.0-skateboard) 0.77(288.0-surfboard) 0.94(177.0-tennis racket) 0.80(1018.0-bottle) 0.85(293.0-wine glass) 0.78(1133.0-cup) 0.28(242.0-fork) 0.24(548.0-knife) 0.22(361.0-spoon) 0.69(1021.0-bowl) 0.55(451.0-banana) 0.22(761.0-apple) 0.23(1041.0-sandwich) 0.25(505.0-orange) 0.67(326.0-broccoli) 0.40(377.0-carrot) 0.02(6204.0-hot dog) 0.92(296.0-pizza) 0.56(464.0-donut) 0.45(380.0-cake) 0.53(2530.0-chair) 0.59(290.0-couch) 0.63(517.0-potted plant) 0.84(231.0-bed) 0.66(1054.0-dining table) 0.92(203.0-toilet) 0.91(316.0-tv) 0.93(243.0-laptop) 0.93(58.0-mouse) 0.49(244.0-remote) 0.77(152.0-keyboard) 0.59(352.0-cell phone) 0.91(110.0-microwave) 0.65(269.0-oven) 0.00(0.0-toaster) 0.77(336.0-sink) 0.77(150.0-refrigerator) 0.22(1178.0-book) 0.95(219.0-clock) 0.79(294.0-vase) 0.52(81.0-scissors) 0.92(140.0-teddy bear) 0.00(0.0-hair drier) 0.17(191.0-toothbrush)
2021-11-06 13:31:05,946 - mmdet - INFO - pseudo ig: 0.57(45830.0-person) 0.29(1284.0-bicycle) 0.43(8074.0-car) 0.47(1482.0-motorcycle) 0.66(491.0-airplane) 0.56(1058.0-bus) 0.47(899.0-train) 0.29(1717.0-truck) 0.27(2200.0-boat) 0.23(3170.0-traffic light) 0.51(325.0-fire hydrant) 0.46(422.0-stop sign) 0.16(304.0-parking meter) 0.16(1881.0-bench) 0.32(1230.0-bird) 0.65(868.0-cat) 0.59(753.0-dog) 0.46(1167.0-horse) 0.59(970.0-sheep) 0.27(1913.0-cow) 0.76(701.0-elephant) 0.49(206.0-bear) 0.48(1312.0-zebra) 0.69(1050.0-giraffe) 0.17(1631.0-backpack) 0.32(1912.0-umbrella) 0.12(2518.0-handbag) 0.22(1456.0-tie) 0.18(1240.0-suitcase) 0.33(558.0-frisbee) 0.23(1297.0-skis) 0.06(709.0-snowboard) 0.31(1192.0-sports ball) 0.28(1633.0-kite) 0.23(572.0-baseball bat) 0.17(1056.0-baseball glove) 0.36(918.0-skateboard) 0.32(1070.0-surfboard) 0.55(707.0-tennis racket) 0.30(4369.0-bottle) 0.33(1123.0-wine glass) 0.26(4636.0-cup) 0.15(816.0-fork) 0.09(1991.0-knife) 0.07(1591.0-spoon) 0.23(3937.0-bowl) 0.19(1915.0-banana) 0.09(1739.0-apple) 0.12(1391.0-sandwich) 0.19(710.0-orange) 0.28(1494.0-broccoli) 0.13(1798.0-carrot) 0.00(492.0-hot dog) 0.46(1036.0-pizza) 0.20(1789.0-donut) 0.17(1189.0-cake) 0.18(10818.0-chair) 0.27(1070.0-couch) 0.23(2187.0-potted plant) 0.39(817.0-bed) 0.26(2980.0-dining table) 0.58(736.0-toilet) 0.43(1142.0-tv) 0.43(809.0-laptop) 0.46(244.0-mouse) 0.16(991.0-remote) 0.41(511.0-keyboard) 0.19(1463.0-cell phone) 0.30(330.0-microwave) 0.17(764.0-oven) 0.00(0.0-toaster) 0.32(1122.0-sink) 0.27(488.0-refrigerator) 0.14(4814.0-book) 0.56(1131.0-clock) 0.32(1010.0-vase) 0.19(279.0-scissors) 0.57(550.0-teddy bear) 0.00(0.0-hair drier) 0.05(532.0-toothbrush)
2021-11-06 13:31:05,946 - mmdet - INFO - pseudo gt: 57350.0 1517.0 9871.0 2019.0 1169.0 1457.0 1047.0 2221.0 2356.0 2935.0 436.0 453.0 260.0 2310.0 2374.0 1089.0 1239.0 1501.0 2058.0 1661.0 1167.0 239.0 1183.0 1191.0 1998.0 2469.0 2854.0 1378.0 1378.0 585.0 1371.0 589.0 1494.0 1802.0 751.0 776.0 1205.0 1331.0 1101.0 5023.0 1693.0 4357.0 1157.0 1620.0 1287.0 2931.0 2062.0 1249.0 928.0 1269.0 1583.0 1637.0 704.0 1368.0 1477.0 1335.0 8554.0 1268.0 2028.0 976.0 3425.0 943.0 1349.0 1138.0 506.0 1272.0 658.0 1388.0 353.0 657.0 42.0 1247.0 557.0 5850.0 1391.0 1377.0 343.0 1084.0 42.0 524.0
2021-11-06 13:31:05,947 - mmdet - INFO - pseudo mining: 7385.0 26.0 768.0 68.0 59.0 81.0 58.0 17.0 55.0 180.0 56.0 191.0 0.0 4.0 14.0 76.0 20.0 56.0 155.0 36.0 204.0 19.0 190.0 282.0 7.0 116.0 1.0 34.0 5.0 66.0 11.0 1.0 223.0 228.0 28.0 61.0 30.0 18.0 179.0 263.0 15.0 166.0 2.0 4.0 1.0 109.0 25.0 28.0 16.0 55.0 51.0 20.0 1.0 39.0 11.0 3.0 17.0 3.0 74.0 6.0 37.0 170.0 152.0 56.0 53.0 11.0 27.0 24.0 16.0 6.0 0.0 43.0 3.0 19.0 551.0 11.0 2.0 58.0 0.0 0.0
2021-11-06 13:31:07,419 - mmdet - INFO - Iter [6500/40000] lr: 2.000e-02, eta: 17:47:05, time: 1.715, data_time: 0.033, memory: 26488, loss_rpn_cls: 0.0209, loss_rpn_bbox: 0.0466, loss_cls: 0.1314, acc: 94.8888, loss_bbox: 0.2268, loss_rpn_cls_unlabeled: 0.0956, loss_rpn_bbox_unlabeled: 0.1022, loss_cls_unlabeled: 0.1745, acc_unlabeled: 91.3663, loss_bbox_unlabeled: 0.1791, losses_cls_ig_unlabeled: 0.1546, pseudo_num: 1.9635, pseudo_num_ig: 6.3170, pseudo_num_mining: 0.5064, pseudo_num(acc): 0.6462, pseudo_num ig(acc): 0.3583, loss: 1.1316
2021-11-06 13:32:30,386 - mmdet - INFO - Iter [6550/40000] lr: 2.000e-02, eta: 17:44:25, time: 1.658, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0204, loss_rpn_bbox: 0.0435, loss_cls: 0.1289, acc: 95.0116, loss_bbox: 0.2233, loss_rpn_cls_unlabeled: 0.0967, loss_rpn_bbox_unlabeled: 0.1049, loss_cls_unlabeled: 0.1846, acc_unlabeled: 91.1571, loss_bbox_unlabeled: 0.1852, losses_cls_ig_unlabeled: 0.1582, pseudo_num: 1.9605, pseudo_num_ig: 6.3125, pseudo_num_mining: 0.5075, pseudo_num(acc): 0.6472, pseudo_num ig(acc): 0.3585, loss: 1.1456
2021-11-06 13:33:56,492 - mmdet - INFO - Iter [6600/40000] lr: 2.000e-02, eta: 17:42:02, time: 1.722, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0182, loss_rpn_bbox: 0.0419, loss_cls: 0.1273, acc: 95.0818, loss_bbox: 0.2228, loss_rpn_cls_unlabeled: 0.0958, loss_rpn_bbox_unlabeled: 0.1020, loss_cls_unlabeled: 0.1837, acc_unlabeled: 91.1237, loss_bbox_unlabeled: 0.1901, losses_cls_ig_unlabeled: 0.1631, pseudo_num: 1.9580, pseudo_num_ig: 6.3100, pseudo_num_mining: 0.5086, pseudo_num(acc): 0.6482, pseudo_num ig(acc): 0.3588, loss: 1.1450
2021-11-06 13:35:20,340 - mmdet - INFO - Iter [6650/40000] lr: 2.000e-02, eta: 17:39:29, time: 1.679, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0194, loss_rpn_bbox: 0.0436, loss_cls: 0.1282, acc: 95.0085, loss_bbox: 0.2267, loss_rpn_cls_unlabeled: 0.0988, loss_rpn_bbox_unlabeled: 0.1020, loss_cls_unlabeled: 0.1886, acc_unlabeled: 90.9319, loss_bbox_unlabeled: 0.1953, losses_cls_ig_unlabeled: 0.1607, pseudo_num: 1.9556, pseudo_num_ig: 6.3069, pseudo_num_mining: 0.5099, pseudo_num(acc): 0.6492, pseudo_num ig(acc): 0.3590, loss: 1.1634
2021-11-06 13:36:44,779 - mmdet - INFO - Iter [6700/40000] lr: 2.000e-02, eta: 17:37:00, time: 1.688, data_time: 0.025, memory: 26488, loss_rpn_cls: 0.0192, loss_rpn_bbox: 0.0427, loss_cls: 0.1312, acc: 94.9260, loss_bbox: 0.2264, loss_rpn_cls_unlabeled: 0.0981, loss_rpn_bbox_unlabeled: 0.1028, loss_cls_unlabeled: 0.1821, acc_unlabeled: 91.1317, loss_bbox_unlabeled: 0.1882, losses_cls_ig_unlabeled: 0.1586, pseudo_num: 1.9534, pseudo_num_ig: 6.3043, pseudo_num_mining: 0.5112, pseudo_num(acc): 0.6501, pseudo_num ig(acc): 0.3593, loss: 1.1493
2021-11-06 13:38:07,924 - mmdet - INFO - Iter [6750/40000] lr: 2.000e-02, eta: 17:34:25, time: 1.664, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0193, loss_rpn_bbox: 0.0459, loss_cls: 0.1329, acc: 94.8618, loss_bbox: 0.2306, loss_rpn_cls_unlabeled: 0.0995, loss_rpn_bbox_unlabeled: 0.1081, loss_cls_unlabeled: 0.2000, acc_unlabeled: 91.0754, loss_bbox_unlabeled: 0.2032, losses_cls_ig_unlabeled: 0.1559, pseudo_num: 1.9515, pseudo_num_ig: 6.3006, pseudo_num_mining: 0.5123, pseudo_num(acc): 0.6510, pseudo_num ig(acc): 0.3595, loss: 1.1955
2021-11-06 13:39:33,034 - mmdet - INFO - Iter [6800/40000] lr: 2.000e-02, eta: 17:32:00, time: 1.699, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0194, loss_rpn_bbox: 0.0450, loss_cls: 0.1249, acc: 95.1409, loss_bbox: 0.2206, loss_rpn_cls_unlabeled: 0.0925, loss_rpn_bbox_unlabeled: 0.1056, loss_cls_unlabeled: 0.1760, acc_unlabeled: 91.1283, loss_bbox_unlabeled: 0.1814, losses_cls_ig_unlabeled: 0.1596, pseudo_num: 1.9497, pseudo_num_ig: 6.2978, pseudo_num_mining: 0.5135, pseudo_num(acc): 0.6519, pseudo_num ig(acc): 0.3596, loss: 1.1249
2021-11-06 13:40:57,584 - mmdet - INFO - Iter [6850/40000] lr: 2.000e-02, eta: 17:29:34, time: 1.691, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0188, loss_rpn_bbox: 0.0440, loss_cls: 0.1296, acc: 94.9507, loss_bbox: 0.2220, loss_rpn_cls_unlabeled: 0.0925, loss_rpn_bbox_unlabeled: 0.1017, loss_cls_unlabeled: 0.1867, acc_unlabeled: 91.2070, loss_bbox_unlabeled: 0.1889, losses_cls_ig_unlabeled: 0.1587, pseudo_num: 1.9471, pseudo_num_ig: 6.2929, pseudo_num_mining: 0.5143, pseudo_num(acc): 0.6528, pseudo_num ig(acc): 0.3598, loss: 1.1430
2021-11-06 13:42:22,976 - mmdet - INFO - Iter [6900/40000] lr: 2.000e-02, eta: 17:27:14, time: 1.710, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0204, loss_rpn_bbox: 0.0446, loss_cls: 0.1292, acc: 94.9902, loss_bbox: 0.2243, loss_rpn_cls_unlabeled: 0.0947, loss_rpn_bbox_unlabeled: 0.1029, loss_cls_unlabeled: 0.1890, acc_unlabeled: 91.1047, loss_bbox_unlabeled: 0.1949, losses_cls_ig_unlabeled: 0.1593, pseudo_num: 1.9452, pseudo_num_ig: 6.2890, pseudo_num_mining: 0.5152, pseudo_num(acc): 0.6537, pseudo_num ig(acc): 0.3599, loss: 1.1591
2021-11-06 13:43:47,581 - mmdet - INFO - Iter [6950/40000] lr: 2.000e-02, eta: 17:24:50, time: 1.691, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0200, loss_rpn_bbox: 0.0447, loss_cls: 0.1287, acc: 95.0095, loss_bbox: 0.2235, loss_rpn_cls_unlabeled: 0.0935, loss_rpn_bbox_unlabeled: 0.1050, loss_cls_unlabeled: 0.1872, acc_unlabeled: 90.9496, loss_bbox_unlabeled: 0.1896, losses_cls_ig_unlabeled: 0.1616, pseudo_num: 1.9431, pseudo_num_ig: 6.2854, pseudo_num_mining: 0.5162, pseudo_num(acc): 0.6545, pseudo_num ig(acc): 0.3601, loss: 1.1540
2021-11-06 13:45:08,194 - mmdet - INFO - pseudo pos: 0.98(13209.0-person) 0.84(365.0-bicycle) 0.91(2224.0-car) 0.95(410.0-motorcycle) 0.97(194.0-airplane) 0.98(310.0-bus) 0.97(279.0-train) 0.66(487.0-truck) 0.61(568.0-boat) 0.85(754.0-traffic light) 0.98(132.0-fire hydrant) 1.00(104.0-stop sign) 0.56(99.0-parking meter) 0.54(486.0-bench) 0.87(440.0-bird) 0.93(285.0-cat) 0.90(274.0-dog) 0.92(390.0-horse) 0.94(294.0-sheep) 0.76(525.0-cow) 0.99(181.0-elephant) 1.00(55.0-bear) 0.98(372.0-zebra) 0.99(368.0-giraffe) 0.38(444.0-backpack) 0.77(604.0-umbrella) 0.36(742.0-handbag) 0.77(349.0-tie) 0.59(363.0-suitcase) 0.90(122.0-frisbee) 0.47(375.0-skis) 0.08(604.0-snowboard) 0.96(302.0-sports ball) 0.74(479.0-kite) 0.77(175.0-baseball bat) 0.68(269.0-baseball glove) 0.91(278.0-skateboard) 0.78(308.0-surfboard) 0.95(185.0-tennis racket) 0.80(1087.0-bottle) 0.85(306.0-wine glass) 0.79(1203.0-cup) 0.28(249.0-fork) 0.24(574.0-knife) 0.22(394.0-spoon) 0.70(1106.0-bowl) 0.57(532.0-banana) 0.23(795.0-apple) 0.23(1141.0-sandwich) 0.26(511.0-orange) 0.68(345.0-broccoli) 0.40(432.0-carrot) 0.02(6204.0-hot dog) 0.93(325.0-pizza) 0.54(504.0-donut) 0.45(411.0-cake) 0.54(2707.0-chair) 0.61(319.0-couch) 0.62(549.0-potted plant) 0.84(242.0-bed) 0.66(1135.0-dining table) 0.90(217.0-toilet) 0.91(343.0-tv) 0.94(261.0-laptop) 0.94(63.0-mouse) 0.49(251.0-remote) 0.78(168.0-keyboard) 0.59(372.0-cell phone) 0.92(118.0-microwave) 0.65(283.0-oven) 0.00(0.0-toaster) 0.77(351.0-sink) 0.78(159.0-refrigerator) 0.22(1247.0-book) 0.96(246.0-clock) 0.80(313.0-vase) 0.52(87.0-scissors) 0.92(145.0-teddy bear) 0.00(0.0-hair drier) 0.18(199.0-toothbrush)
2021-11-06 13:45:08,195 - mmdet - INFO - pseudo ig: 0.57(49255.0-person) 0.29(1360.0-bicycle) 0.43(8515.0-car) 0.48(1568.0-motorcycle) 0.66(521.0-airplane) 0.56(1115.0-bus) 0.47(955.0-train) 0.29(1827.0-truck) 0.27(2386.0-boat) 0.24(3344.0-traffic light) 0.51(346.0-fire hydrant) 0.46(452.0-stop sign) 0.18(316.0-parking meter) 0.16(2017.0-bench) 0.33(1289.0-bird) 0.65(927.0-cat) 0.59(812.0-dog) 0.46(1247.0-horse) 0.60(1071.0-sheep) 0.28(2056.0-cow) 0.76(759.0-elephant) 0.51(221.0-bear) 0.49(1367.0-zebra) 0.69(1138.0-giraffe) 0.17(1741.0-backpack) 0.32(2051.0-umbrella) 0.12(2790.0-handbag) 0.23(1547.0-tie) 0.18(1319.0-suitcase) 0.35(596.0-frisbee) 0.24(1389.0-skis) 0.07(734.0-snowboard) 0.32(1267.0-sports ball) 0.28(1756.0-kite) 0.23(612.0-baseball bat) 0.17(1093.0-baseball glove) 0.36(1003.0-skateboard) 0.33(1159.0-surfboard) 0.56(750.0-tennis racket) 0.30(4629.0-bottle) 0.33(1170.0-wine glass) 0.27(4918.0-cup) 0.16(854.0-fork) 0.09(2108.0-knife) 0.07(1688.0-spoon) 0.23(4188.0-bowl) 0.20(2017.0-banana) 0.09(1908.0-apple) 0.11(1545.0-sandwich) 0.20(833.0-orange) 0.28(1572.0-broccoli) 0.14(1938.0-carrot) 0.00(492.0-hot dog) 0.45(1126.0-pizza) 0.19(1942.0-donut) 0.18(1274.0-cake) 0.18(11407.0-chair) 0.27(1156.0-couch) 0.23(2302.0-potted plant) 0.39(866.0-bed) 0.26(3206.0-dining table) 0.57(789.0-toilet) 0.43(1207.0-tv) 0.43(864.0-laptop) 0.47(271.0-mouse) 0.16(1039.0-remote) 0.42(558.0-keyboard) 0.19(1554.0-cell phone) 0.29(353.0-microwave) 0.18(817.0-oven) 0.00(0.0-toaster) 0.33(1205.0-sink) 0.28(524.0-refrigerator) 0.14(5183.0-book) 0.57(1213.0-clock) 0.32(1065.0-vase) 0.20(304.0-scissors) 0.57(586.0-teddy bear) 0.00(0.0-hair drier) 0.05(579.0-toothbrush)
2021-11-06 13:45:08,195 - mmdet - INFO - pseudo gt: 61649.0 1608.0 10487.0 2143.0 1256.0 1536.0 1115.0 2374.0 2543.0 3130.0 472.0 488.0 283.0 2470.0 2565.0 1177.0 1321.0 1624.0 2276.0 1831.0 1240.0 252.0 1248.0 1299.0 2145.0 2636.0 3062.0 1507.0 1481.0 622.0 1491.0 633.0 1584.0 1929.0 813.0 841.0 1293.0 1422.0 1163.0 5296.0 1780.0 4693.0 1225.0 1746.0 1389.0 3142.0 2258.0 1402.0 992.0 1398.0 1670.0 1787.0 753.0 1468.0 1571.0 1459.0 9078.0 1349.0 2144.0 1027.0 3700.0 1009.0 1445.0 1221.0 552.0 1361.0 719.0 1498.0 384.0 720.0 46.0 1337.0 606.0 6291.0 1516.0 1442.0 366.0 1165.0 49.0 545.0
2021-11-06 13:45:08,195 - mmdet - INFO - pseudo mining: 8039.0 27.0 852.0 81.0 64.0 87.0 64.0 22.0 62.0 196.0 62.0 205.0 2.0 6.0 21.0 89.0 23.0 69.0 194.0 44.0 223.0 25.0 210.0 316.0 9.0 128.0 1.0 38.0 6.0 76.0 11.0 2.0 242.0 265.0 31.0 62.0 33.0 19.0 194.0 285.0 17.0 186.0 2.0 4.0 1.0 116.0 29.0 31.0 16.0 76.0 55.0 23.0 1.0 47.0 21.0 3.0 20.0 3.0 80.0 6.0 39.0 185.0 166.0 64.0 62.0 11.0 35.0 28.0 19.0 7.0 0.0 59.0 4.0 20.0 599.0 11.0 2.0 63.0 0.0 0.0
2021-11-06 13:46:33,635 - mmdet - INFO - current percent: 0.2
2021-11-06 13:46:33,635 - mmdet - INFO - update score thr (positive): (1.00-person) (0.97-bicycle) (0.99-car) (0.99-motorcycle) (1.00-airplane) (1.00-bus) (0.99-train) (0.96-truck) (0.98-boat) (0.97-traffic light) (1.00-fire hydrant) (1.00-stop sign) (0.91-parking meter) (0.92-bench) (0.97-bird) (0.99-cat) (0.98-dog) (0.99-horse) (1.00-sheep) (0.95-cow) (1.00-elephant) (0.99-bear) (1.00-zebra) (1.00-giraffe) (0.90-backpack) (0.99-umbrella) (0.79-handbag) (0.97-tie) (0.90-suitcase) (0.99-frisbee) (0.93-skis) (0.84-snowboard) (0.99-sports ball) (0.98-kite) (0.99-baseball bat) (0.99-baseball glove) (0.99-skateboard) (0.97-surfboard) (1.00-tennis racket) (0.98-bottle) (0.95-wine glass) (0.98-cup) (0.91-fork) (0.86-knife) (0.82-spoon) (0.98-bowl) (0.95-banana) (0.93-apple) (0.99-sandwich) (0.98-orange) (0.98-broccoli) (0.94-carrot) (0.14-hot dog) (0.99-pizza) (0.99-donut) (0.94-cake) (0.91-chair) (0.97-couch) (0.97-potted plant) (0.98-bed) (0.98-dining table) (1.00-toilet) (0.99-tv) (1.00-laptop) (0.99-mouse) (0.84-remote) (0.99-keyboard) (0.97-cell phone) (0.98-microwave) (0.97-oven) (0.05-toaster) (0.99-sink) (0.98-refrigerator) (0.87-book) (1.00-clock) (0.98-vase) (0.97-scissors) (0.99-teddy bear) (0.05-hair drier) (0.73-toothbrush)
2021-11-06 13:46:33,635 - mmdet - INFO - update score thr (ignore): (0.28-person) (0.21-bicycle) (0.37-car) (0.27-motorcycle) (0.71-airplane) (0.34-bus) (0.36-train) (0.37-truck) (0.39-boat) (0.34-traffic light) (0.52-fire hydrant) (0.61-stop sign) (0.11-parking meter) (0.27-bench) (0.13-bird) (0.44-cat) (0.36-dog) (0.29-horse) (0.74-sheep) (0.26-cow) (0.52-elephant) (0.27-bear) (0.09-zebra) (0.16-giraffe) (0.37-backpack) (0.24-umbrella) (0.24-handbag) (0.23-tie) (0.20-suitcase) (0.51-frisbee) (0.35-skis) (0.31-snowboard) (0.31-sports ball) (0.40-kite) (0.45-baseball bat) (0.43-baseball glove) (0.32-skateboard) (0.32-surfboard) (0.63-tennis racket) (0.41-bottle) (0.14-wine glass) (0.30-cup) (0.12-fork) (0.29-knife) (0.26-spoon) (0.37-bowl) (0.26-banana) (0.34-apple) (0.85-sandwich) (0.64-orange) (0.51-broccoli) (0.52-carrot) (0.10-hot dog) (0.49-pizza) (0.56-donut) (0.29-cake) (0.21-chair) (0.56-couch) (0.40-potted plant) (0.45-bed) (0.42-dining table) (0.59-toilet) (0.54-tv) (0.46-laptop) (0.75-mouse) (0.19-remote) (0.62-keyboard) (0.39-cell phone) (0.47-microwave) (0.39-oven) (0.05-toaster) (0.47-sink) (0.48-refrigerator) (0.30-book) (0.60-clock) (0.32-vase) (0.53-scissors) (0.68-teddy bear) (0.05-hair drier) (0.17-toothbrush)
2021-11-06 13:46:33,888 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 13:46:33,888 - mmdet - INFO - Iter [7000/40000] lr: 2.000e-02, eta: 17:22:15, time: 1.645, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0192, loss_rpn_bbox: 0.0438, loss_cls: 0.1278, acc: 95.0922, loss_bbox: 0.2173, loss_rpn_cls_unlabeled: 0.0989, loss_rpn_bbox_unlabeled: 0.1046, loss_cls_unlabeled: 0.1899, acc_unlabeled: 91.0475, loss_bbox_unlabeled: 0.1934, losses_cls_ig_unlabeled: 0.1579, pseudo_num: 1.9413, pseudo_num_ig: 6.2822, pseudo_num_mining: 0.5172, pseudo_num(acc): 0.6554, pseudo_num ig(acc): 0.3602, loss: 1.1530
2021-11-06 13:47:58,322 - mmdet - INFO - Iter [7050/40000] lr: 2.000e-02, eta: 17:26:25, time: 3.370, data_time: 1.711, memory: 26488, loss_rpn_cls: 0.0187, loss_rpn_bbox: 0.0414, loss_cls: 0.1239, acc: 95.1967, loss_bbox: 0.2174, loss_rpn_cls_unlabeled: 0.0946, loss_rpn_bbox_unlabeled: 0.1001, loss_cls_unlabeled: 0.1696, acc_unlabeled: 91.4463, loss_bbox_unlabeled: 0.1711, losses_cls_ig_unlabeled: 0.1557, pseudo_num: 1.9385, pseudo_num_ig: 6.2782, pseudo_num_mining: 0.5186, pseudo_num(acc): 0.6562, pseudo_num ig(acc): 0.3605, loss: 1.0924
2021-11-06 13:49:24,226 - mmdet - INFO - Iter [7100/40000] lr: 2.000e-02, eta: 17:24:06, time: 1.716, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0189, loss_rpn_bbox: 0.0433, loss_cls: 0.1279, acc: 95.0538, loss_bbox: 0.2258, loss_rpn_cls_unlabeled: 0.0948, loss_rpn_bbox_unlabeled: 0.1038, loss_cls_unlabeled: 0.1737, acc_unlabeled: 91.1364, loss_bbox_unlabeled: 0.1757, losses_cls_ig_unlabeled: 0.1661, pseudo_num: 1.9353, pseudo_num_ig: 6.2763, pseudo_num_mining: 0.5204, pseudo_num(acc): 0.6571, pseudo_num ig(acc): 0.3609, loss: 1.1301
2021-11-06 13:50:48,926 - mmdet - INFO - Iter [7150/40000] lr: 2.000e-02, eta: 17:21:43, time: 1.697, data_time: 0.032, memory: 26488, loss_rpn_cls: 0.0192, loss_rpn_bbox: 0.0419, loss_cls: 0.1230, acc: 95.2036, loss_bbox: 0.2152, loss_rpn_cls_unlabeled: 0.0996, loss_rpn_bbox_unlabeled: 0.1030, loss_cls_unlabeled: 0.1764, acc_unlabeled: 91.0499, loss_bbox_unlabeled: 0.1792, losses_cls_ig_unlabeled: 0.1643, pseudo_num: 1.9322, pseudo_num_ig: 6.2751, pseudo_num_mining: 0.5224, pseudo_num(acc): 0.6580, pseudo_num ig(acc): 0.3612, loss: 1.1217
2021-11-06 13:52:13,999 - mmdet - INFO - Iter [7200/40000] lr: 2.000e-02, eta: 17:19:22, time: 1.700, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0194, loss_rpn_bbox: 0.0437, loss_cls: 0.1276, acc: 95.0352, loss_bbox: 0.2221, loss_rpn_cls_unlabeled: 0.0985, loss_rpn_bbox_unlabeled: 0.1009, loss_cls_unlabeled: 0.1687, acc_unlabeled: 91.3838, loss_bbox_unlabeled: 0.1705, losses_cls_ig_unlabeled: 0.1601, pseudo_num: 1.9289, pseudo_num_ig: 6.2730, pseudo_num_mining: 0.5242, pseudo_num(acc): 0.6589, pseudo_num ig(acc): 0.3614, loss: 1.1116
2021-11-06 13:53:37,811 - mmdet - INFO - Iter [7250/40000] lr: 2.000e-02, eta: 17:16:57, time: 1.678, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0190, loss_rpn_bbox: 0.0417, loss_cls: 0.1232, acc: 95.1864, loss_bbox: 0.2148, loss_rpn_cls_unlabeled: 0.0949, loss_rpn_bbox_unlabeled: 0.1005, loss_cls_unlabeled: 0.1767, acc_unlabeled: 91.2662, loss_bbox_unlabeled: 0.1788, losses_cls_ig_unlabeled: 0.1581, pseudo_num: 1.9258, pseudo_num_ig: 6.2694, pseudo_num_mining: 0.5258, pseudo_num(acc): 0.6598, pseudo_num ig(acc): 0.3617, loss: 1.1078
2021-11-06 13:55:02,522 - mmdet - INFO - Iter [7300/40000] lr: 2.000e-02, eta: 17:14:35, time: 1.691, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0184, loss_rpn_bbox: 0.0434, loss_cls: 0.1229, acc: 95.2269, loss_bbox: 0.2166, loss_rpn_cls_unlabeled: 0.0963, loss_rpn_bbox_unlabeled: 0.1014, loss_cls_unlabeled: 0.1686, acc_unlabeled: 91.1448, loss_bbox_unlabeled: 0.1703, losses_cls_ig_unlabeled: 0.1607, pseudo_num: 1.9232, pseudo_num_ig: 6.2675, pseudo_num_mining: 0.5273, pseudo_num(acc): 0.6608, pseudo_num ig(acc): 0.3619, loss: 1.0986
2021-11-06 13:57:43,613 - mmdet - INFO - Iter [7350/40000] lr: 2.000e-02, eta: 17:17:54, time: 3.222, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0187, loss_rpn_bbox: 0.0441, loss_cls: 0.1235, acc: 95.1869, loss_bbox: 0.2173, loss_rpn_cls_unlabeled: 0.0946, loss_rpn_bbox_unlabeled: 0.1043, loss_cls_unlabeled: 0.1689, acc_unlabeled: 91.4440, loss_bbox_unlabeled: 0.1775, losses_cls_ig_unlabeled: 0.1568, pseudo_num: 1.9201, pseudo_num_ig: 6.2640, pseudo_num_mining: 0.5285, pseudo_num(acc): 0.6617, pseudo_num ig(acc): 0.3622, loss: 1.1057
2021-11-06 13:59:07,007 - mmdet - INFO - Iter [7400/40000] lr: 2.000e-02, eta: 17:15:27, time: 1.670, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0186, loss_rpn_bbox: 0.0457, loss_cls: 0.1279, acc: 95.0248, loss_bbox: 0.2235, loss_rpn_cls_unlabeled: 0.0923, loss_rpn_bbox_unlabeled: 0.0993, loss_cls_unlabeled: 0.1702, acc_unlabeled: 91.4073, loss_bbox_unlabeled: 0.1766, losses_cls_ig_unlabeled: 0.1595, pseudo_num: 1.9175, pseudo_num_ig: 6.2602, pseudo_num_mining: 0.5297, pseudo_num(acc): 0.6625, pseudo_num ig(acc): 0.3625, loss: 1.1137
2021-11-06 14:00:31,384 - mmdet - INFO - Iter [7450/40000] lr: 2.000e-02, eta: 17:13:04, time: 1.688, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0185, loss_rpn_bbox: 0.0433, loss_cls: 0.1224, acc: 95.2087, loss_bbox: 0.2184, loss_rpn_cls_unlabeled: 0.0958, loss_rpn_bbox_unlabeled: 0.1048, loss_cls_unlabeled: 0.1742, acc_unlabeled: 91.3029, loss_bbox_unlabeled: 0.1807, losses_cls_ig_unlabeled: 0.1615, pseudo_num: 1.9150, pseudo_num_ig: 6.2568, pseudo_num_mining: 0.5310, pseudo_num(acc): 0.6634, pseudo_num ig(acc): 0.3628, loss: 1.1195
2021-11-06 14:01:56,994 - mmdet - INFO - pseudo pos: 0.98(14168.0-person) 0.85(395.0-bicycle) 0.92(2366.0-car) 0.95(441.0-motorcycle) 0.97(205.0-airplane) 0.98(336.0-bus) 0.97(301.0-train) 0.67(519.0-truck) 0.61(610.0-boat) 0.85(788.0-traffic light) 0.99(145.0-fire hydrant) 1.00(114.0-stop sign) 0.58(106.0-parking meter) 0.54(515.0-bench) 0.88(467.0-bird) 0.93(303.0-cat) 0.90(290.0-dog) 0.93(416.0-horse) 0.94(309.0-sheep) 0.77(579.0-cow) 0.99(194.0-elephant) 1.00(57.0-bear) 0.99(407.0-zebra) 0.99(388.0-giraffe) 0.38(468.0-backpack) 0.77(640.0-umbrella) 0.37(795.0-handbag) 0.78(362.0-tie) 0.59(376.0-suitcase) 0.90(132.0-frisbee) 0.49(397.0-skis) 0.08(605.0-snowboard) 0.96(328.0-sports ball) 0.73(520.0-kite) 0.78(183.0-baseball bat) 0.69(281.0-baseball glove) 0.92(294.0-skateboard) 0.77(330.0-surfboard) 0.95(188.0-tennis racket) 0.80(1168.0-bottle) 0.86(325.0-wine glass) 0.78(1269.0-cup) 0.28(260.0-fork) 0.24(603.0-knife) 0.22(423.0-spoon) 0.70(1187.0-bowl) 0.57(551.0-banana) 0.23(802.0-apple) 0.24(1151.0-sandwich) 0.26(513.0-orange) 0.67(366.0-broccoli) 0.41(462.0-carrot) 0.02(6215.0-hot dog) 0.93(346.0-pizza) 0.55(517.0-donut) 0.46(425.0-cake) 0.54(2876.0-chair) 0.62(345.0-couch) 0.63(584.0-potted plant) 0.84(256.0-bed) 0.67(1198.0-dining table) 0.91(229.0-toilet) 0.91(365.0-tv) 0.94(270.0-laptop) 0.94(69.0-mouse) 0.51(275.0-remote) 0.78(176.0-keyboard) 0.60(391.0-cell phone) 0.92(118.0-microwave) 0.65(291.0-oven) 0.00(1.0-toaster) 0.77(375.0-sink) 0.79(166.0-refrigerator) 0.22(1317.0-book) 0.96(268.0-clock) 0.80(323.0-vase) 0.53(89.0-scissors) 0.92(155.0-teddy bear) 0.00(0.0-hair drier) 0.18(207.0-toothbrush)
2021-11-06 14:01:56,995 - mmdet - INFO - pseudo ig: 0.57(53106.0-person) 0.29(1455.0-bicycle) 0.44(9065.0-car) 0.47(1665.0-motorcycle) 0.67(574.0-airplane) 0.56(1207.0-bus) 0.48(1020.0-train) 0.30(1961.0-truck) 0.27(2519.0-boat) 0.24(3490.0-traffic light) 0.51(373.0-fire hydrant) 0.47(490.0-stop sign) 0.19(337.0-parking meter) 0.16(2114.0-bench) 0.32(1377.0-bird) 0.65(982.0-cat) 0.59(876.0-dog) 0.47(1362.0-horse) 0.61(1194.0-sheep) 0.27(2269.0-cow) 0.77(833.0-elephant) 0.51(255.0-bear) 0.48(1514.0-zebra) 0.69(1209.0-giraffe) 0.17(1845.0-backpack) 0.33(2255.0-umbrella) 0.12(3004.0-handbag) 0.23(1618.0-tie) 0.18(1407.0-suitcase) 0.36(629.0-frisbee) 0.24(1488.0-skis) 0.08(767.0-snowboard) 0.32(1357.0-sports ball) 0.28(1941.0-kite) 0.24(661.0-baseball bat) 0.18(1144.0-baseball glove) 0.37(1069.0-skateboard) 0.33(1237.0-surfboard) 0.58(792.0-tennis racket) 0.30(4950.0-bottle) 0.33(1236.0-wine glass) 0.26(5216.0-cup) 0.16(906.0-fork) 0.09(2250.0-knife) 0.08(1783.0-spoon) 0.23(4476.0-bowl) 0.20(2104.0-banana) 0.09(1967.0-apple) 0.12(1582.0-sandwich) 0.20(858.0-orange) 0.29(1666.0-broccoli) 0.14(2038.0-carrot) 0.00(511.0-hot dog) 0.45(1190.0-pizza) 0.20(2020.0-donut) 0.18(1347.0-cake) 0.18(12103.0-chair) 0.27(1237.0-couch) 0.23(2414.0-potted plant) 0.40(933.0-bed) 0.27(3425.0-dining table) 0.56(868.0-toilet) 0.44(1281.0-tv) 0.45(916.0-laptop) 0.47(287.0-mouse) 0.17(1115.0-remote) 0.41(584.0-keyboard) 0.19(1643.0-cell phone) 0.30(372.0-microwave) 0.18(855.0-oven) 0.00(0.0-toaster) 0.34(1267.0-sink) 0.28(558.0-refrigerator) 0.13(5486.0-book) 0.57(1279.0-clock) 0.32(1141.0-vase) 0.21(319.0-scissors) 0.57(619.0-teddy bear) 0.00(0.0-hair drier) 0.05(608.0-toothbrush)
2021-11-06 14:01:56,995 - mmdet - INFO - pseudo gt: 66106.0 1714.0 11265.0 2287.0 1361.0 1667.0 1187.0 2548.0 2744.0 3297.0 508.0 544.0 304.0 2596.0 2719.0 1274.0 1399.0 1764.0 2531.0 1983.0 1360.0 275.0 1363.0 1375.0 2299.0 2876.0 3265.0 1617.0 1565.0 664.0 1591.0 676.0 1703.0 2104.0 866.0 906.0 1382.0 1512.0 1233.0 5707.0 1872.0 4980.0 1317.0 1895.0 1485.0 3400.0 2354.0 1460.0 1068.0 1461.0 1826.0 1975.0 811.0 1590.0 1671.0 1560.0 9826.0 1445.0 2295.0 1109.0 3949.0 1098.0 1542.0 1299.0 585.0 1481.0 758.0 1589.0 399.0 759.0 55.0 1428.0 643.0 6701.0 1611.0 1563.0 383.0 1233.0 50.0 574.0
2021-11-06 14:01:56,997 - mmdet - INFO - pseudo mining: 8850.0 28.0 948.0 87.0 74.0 107.0 73.0 27.0 68.0 210.0 70.0 228.0 2.0 8.0 21.0 93.0 29.0 83.0 243.0 45.0 254.0 31.0 233.0 339.0 10.0 152.0 1.0 41.0 6.0 79.0 11.0 2.0 267.0 313.0 37.0 67.0 38.0 22.0 220.0 321.0 17.0 212.0 2.0 5.0 1.0 138.0 33.0 31.0 24.0 83.0 67.0 31.0 1.0 53.0 36.0 5.0 25.0 4.0 86.0 7.0 42.0 213.0 181.0 77.0 68.0 11.0 39.0 33.0 22.0 7.0 0.0 66.0 6.0 20.0 637.0 14.0 2.0 75.0 0.0 0.0
2021-11-06 14:01:58,468 - mmdet - INFO - Iter [7500/40000] lr: 2.000e-02, eta: 17:10:53, time: 1.741, data_time: 0.031, memory: 26488, loss_rpn_cls: 0.0193, loss_rpn_bbox: 0.0469, loss_cls: 0.1287, acc: 95.0010, loss_bbox: 0.2262, loss_rpn_cls_unlabeled: 0.0900, loss_rpn_bbox_unlabeled: 0.1035, loss_cls_unlabeled: 0.1703, acc_unlabeled: 91.4160, loss_bbox_unlabeled: 0.1779, losses_cls_ig_unlabeled: 0.1564, pseudo_num: 1.9125, pseudo_num_ig: 6.2541, pseudo_num_mining: 0.5323, pseudo_num(acc): 0.6643, pseudo_num ig(acc): 0.3630, loss: 1.1193
2021-11-06 14:03:21,785 - mmdet - INFO - Iter [7550/40000] lr: 2.000e-02, eta: 17:08:27, time: 1.667, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0174, loss_rpn_bbox: 0.0423, loss_cls: 0.1200, acc: 95.3390, loss_bbox: 0.2135, loss_rpn_cls_unlabeled: 0.0949, loss_rpn_bbox_unlabeled: 0.1009, loss_cls_unlabeled: 0.1805, acc_unlabeled: 91.3285, loss_bbox_unlabeled: 0.1843, losses_cls_ig_unlabeled: 0.1587, pseudo_num: 1.9103, pseudo_num_ig: 6.2502, pseudo_num_mining: 0.5332, pseudo_num(acc): 0.6652, pseudo_num ig(acc): 0.3633, loss: 1.1125
2021-11-06 14:04:45,667 - mmdet - INFO - Iter [7600/40000] lr: 2.000e-02, eta: 17:06:04, time: 1.677, data_time: 0.025, memory: 26488, loss_rpn_cls: 0.0174, loss_rpn_bbox: 0.0424, loss_cls: 0.1153, acc: 95.4828, loss_bbox: 0.2112, loss_rpn_cls_unlabeled: 0.0931, loss_rpn_bbox_unlabeled: 0.1006, loss_cls_unlabeled: 0.1738, acc_unlabeled: 91.5250, loss_bbox_unlabeled: 0.1847, losses_cls_ig_unlabeled: 0.1529, pseudo_num: 1.9083, pseudo_num_ig: 6.2469, pseudo_num_mining: 0.5347, pseudo_num(acc): 0.6660, pseudo_num ig(acc): 0.3635, loss: 1.0913
2021-11-06 14:06:11,027 - mmdet - INFO - Iter [7650/40000] lr: 2.000e-02, eta: 17:03:48, time: 1.707, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0185, loss_rpn_bbox: 0.0441, loss_cls: 0.1267, acc: 95.0128, loss_bbox: 0.2256, loss_rpn_cls_unlabeled: 0.0940, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.1771, acc_unlabeled: 91.4407, loss_bbox_unlabeled: 0.1864, losses_cls_ig_unlabeled: 0.1535, pseudo_num: 1.9066, pseudo_num_ig: 6.2434, pseudo_num_mining: 0.5359, pseudo_num(acc): 0.6669, pseudo_num ig(acc): 0.3638, loss: 1.1263
2021-11-06 14:07:35,756 - mmdet - INFO - Iter [7700/40000] lr: 2.000e-02, eta: 17:01:31, time: 1.696, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0176, loss_rpn_bbox: 0.0415, loss_cls: 0.1208, acc: 95.2933, loss_bbox: 0.2133, loss_rpn_cls_unlabeled: 0.0959, loss_rpn_bbox_unlabeled: 0.1030, loss_cls_unlabeled: 0.1834, acc_unlabeled: 91.5261, loss_bbox_unlabeled: 0.1909, losses_cls_ig_unlabeled: 0.1475, pseudo_num: 1.9054, pseudo_num_ig: 6.2406, pseudo_num_mining: 0.5373, pseudo_num(acc): 0.6676, pseudo_num ig(acc): 0.3640, loss: 1.1139
2021-11-06 14:08:59,210 - mmdet - INFO - Iter [7750/40000] lr: 2.000e-02, eta: 16:59:08, time: 1.668, data_time: 0.025, memory: 26488, loss_rpn_cls: 0.0185, loss_rpn_bbox: 0.0424, loss_cls: 0.1202, acc: 95.3046, loss_bbox: 0.2144, loss_rpn_cls_unlabeled: 0.0936, loss_rpn_bbox_unlabeled: 0.1014, loss_cls_unlabeled: 0.1870, acc_unlabeled: 91.1876, loss_bbox_unlabeled: 0.1920, losses_cls_ig_unlabeled: 0.1569, pseudo_num: 1.9036, pseudo_num_ig: 6.2362, pseudo_num_mining: 0.5383, pseudo_num(acc): 0.6683, pseudo_num ig(acc): 0.3642, loss: 1.1264
2021-11-06 14:10:22,766 - mmdet - INFO - Iter [7800/40000] lr: 2.000e-02, eta: 16:56:47, time: 1.671, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0185, loss_rpn_bbox: 0.0447, loss_cls: 0.1223, acc: 95.2208, loss_bbox: 0.2165, loss_rpn_cls_unlabeled: 0.0945, loss_rpn_bbox_unlabeled: 0.0995, loss_cls_unlabeled: 0.1862, acc_unlabeled: 91.5558, loss_bbox_unlabeled: 0.1974, losses_cls_ig_unlabeled: 0.1489, pseudo_num: 1.9024, pseudo_num_ig: 6.2325, pseudo_num_mining: 0.5395, pseudo_num(acc): 0.6688, pseudo_num ig(acc): 0.3645, loss: 1.1285
2021-11-06 14:11:47,517 - mmdet - INFO - Iter [7850/40000] lr: 2.000e-02, eta: 16:54:31, time: 1.695, data_time: 0.029, memory: 26488, loss_rpn_cls: 0.0192, loss_rpn_bbox: 0.0432, loss_cls: 0.1240, acc: 95.2014, loss_bbox: 0.2208, loss_rpn_cls_unlabeled: 0.0975, loss_rpn_bbox_unlabeled: 0.1062, loss_cls_unlabeled: 0.1887, acc_unlabeled: 91.2253, loss_bbox_unlabeled: 0.1978, losses_cls_ig_unlabeled: 0.1545, pseudo_num: 1.9016, pseudo_num_ig: 6.2292, pseudo_num_mining: 0.5409, pseudo_num(acc): 0.6693, pseudo_num ig(acc): 0.3647, loss: 1.1518
2021-11-06 14:13:10,281 - mmdet - INFO - Iter [7900/40000] lr: 2.000e-02, eta: 16:52:08, time: 1.654, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0178, loss_rpn_bbox: 0.0414, loss_cls: 0.1230, acc: 95.2197, loss_bbox: 0.2112, loss_rpn_cls_unlabeled: 0.0916, loss_rpn_bbox_unlabeled: 0.0979, loss_cls_unlabeled: 0.1897, acc_unlabeled: 91.4230, loss_bbox_unlabeled: 0.1938, losses_cls_ig_unlabeled: 0.1521, pseudo_num: 1.9003, pseudo_num_ig: 6.2253, pseudo_num_mining: 0.5420, pseudo_num(acc): 0.6696, pseudo_num ig(acc): 0.3649, loss: 1.1184
2021-11-06 14:14:36,201 - mmdet - INFO - Iter [7950/40000] lr: 2.000e-02, eta: 16:49:58, time: 1.719, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0182, loss_rpn_bbox: 0.0438, loss_cls: 0.1287, acc: 95.0177, loss_bbox: 0.2205, loss_rpn_cls_unlabeled: 0.0908, loss_rpn_bbox_unlabeled: 0.1042, loss_cls_unlabeled: 0.2049, acc_unlabeled: 91.0524, loss_bbox_unlabeled: 0.2113, losses_cls_ig_unlabeled: 0.1545, pseudo_num: 1.8994, pseudo_num_ig: 6.2218, pseudo_num_mining: 0.5431, pseudo_num(acc): 0.6699, pseudo_num ig(acc): 0.3651, loss: 1.1769
2021-11-06 14:15:59,114 - mmdet - INFO - pseudo pos: 0.98(15190.0-person) 0.85(420.0-bicycle) 0.92(2508.0-car) 0.96(461.0-motorcycle) 0.97(218.0-airplane) 0.98(352.0-bus) 0.97(312.0-train) 0.66(552.0-truck) 0.62(645.0-boat) 0.85(858.0-traffic light) 0.99(150.0-fire hydrant) 0.99(122.0-stop sign) 0.59(110.0-parking meter) 0.55(551.0-bench) 0.87(486.0-bird) 0.93(329.0-cat) 0.91(315.0-dog) 0.93(455.0-horse) 0.95(313.0-sheep) 0.76(655.0-cow) 0.99(204.0-elephant) 1.00(65.0-bear) 0.99(441.0-zebra) 1.00(417.0-giraffe) 0.38(499.0-backpack) 0.77(668.0-umbrella) 0.37(838.0-handbag) 0.78(383.0-tie) 0.59(395.0-suitcase) 0.91(137.0-frisbee) 0.50(422.0-skis) 0.09(613.0-snowboard) 0.96(361.0-sports ball) 0.73(559.0-kite) 0.79(194.0-baseball bat) 0.70(302.0-baseball glove) 0.92(309.0-skateboard) 0.76(352.0-surfboard) 0.94(196.0-tennis racket) 0.80(1235.0-bottle) 0.87(349.0-wine glass) 0.79(1321.0-cup) 0.29(274.0-fork) 0.24(629.0-knife) 0.23(458.0-spoon) 0.70(1259.0-bowl) 0.56(580.0-banana) 0.23(824.0-apple) 0.24(1155.0-sandwich) 0.27(519.0-orange) 0.67(393.0-broccoli) 0.41(480.0-carrot) 0.02(6518.0-hot dog) 0.93(364.0-pizza) 0.56(533.0-donut) 0.47(446.0-cake) 0.55(3051.0-chair) 0.63(363.0-couch) 0.63(615.0-potted plant) 0.85(275.0-bed) 0.67(1261.0-dining table) 0.91(241.0-toilet) 0.92(396.0-tv) 0.94(282.0-laptop) 0.94(78.0-mouse) 0.53(298.0-remote) 0.77(189.0-keyboard) 0.60(408.0-cell phone) 0.92(122.0-microwave) 0.66(303.0-oven) 0.00(1.0-toaster) 0.77(399.0-sink) 0.80(177.0-refrigerator) 0.23(1392.0-book) 0.95(302.0-clock) 0.80(341.0-vase) 0.54(95.0-scissors) 0.93(166.0-teddy bear) 0.00(0.0-hair drier) 0.18(209.0-toothbrush)
2021-11-06 14:15:59,115 - mmdet - INFO - pseudo ig: 0.57(56288.0-person) 0.29(1556.0-bicycle) 0.44(9516.0-car) 0.47(1744.0-motorcycle) 0.68(604.0-airplane) 0.57(1298.0-bus) 0.48(1091.0-train) 0.30(2093.0-truck) 0.28(2634.0-boat) 0.24(3689.0-traffic light) 0.51(395.0-fire hydrant) 0.47(520.0-stop sign) 0.18(354.0-parking meter) 0.16(2204.0-bench) 0.32(1466.0-bird) 0.65(1048.0-cat) 0.59(945.0-dog) 0.47(1476.0-horse) 0.62(1253.0-sheep) 0.27(2478.0-cow) 0.78(918.0-elephant) 0.51(284.0-bear) 0.47(1623.0-zebra) 0.68(1293.0-giraffe) 0.17(1923.0-backpack) 0.33(2385.0-umbrella) 0.12(3166.0-handbag) 0.24(1675.0-tie) 0.18(1477.0-suitcase) 0.36(650.0-frisbee) 0.24(1569.0-skis) 0.09(803.0-snowboard) 0.33(1470.0-sports ball) 0.28(2061.0-kite) 0.24(704.0-baseball bat) 0.19(1195.0-baseball glove) 0.37(1146.0-skateboard) 0.33(1314.0-surfboard) 0.59(855.0-tennis racket) 0.30(5246.0-bottle) 0.32(1343.0-wine glass) 0.27(5515.0-cup) 0.16(939.0-fork) 0.09(2376.0-knife) 0.08(1879.0-spoon) 0.24(4747.0-bowl) 0.20(2212.0-banana) 0.09(2050.0-apple) 0.13(1607.0-sandwich) 0.20(882.0-orange) 0.30(1757.0-broccoli) 0.14(2121.0-carrot) 0.01(594.0-hot dog) 0.46(1263.0-pizza) 0.21(2099.0-donut) 0.18(1410.0-cake) 0.18(12705.0-chair) 0.27(1293.0-couch) 0.23(2549.0-potted plant) 0.39(981.0-bed) 0.27(3644.0-dining table) 0.57(944.0-toilet) 0.44(1378.0-tv) 0.46(982.0-laptop) 0.48(304.0-mouse) 0.17(1207.0-remote) 0.41(611.0-keyboard) 0.19(1735.0-cell phone) 0.32(402.0-microwave) 0.19(925.0-oven) 0.00(0.0-toaster) 0.34(1359.0-sink) 0.28(603.0-refrigerator) 0.13(5857.0-book) 0.57(1343.0-clock) 0.32(1224.0-vase) 0.21(330.0-scissors) 0.58(651.0-teddy bear) 0.00(0.0-hair drier) 0.04(639.0-toothbrush)
2021-11-06 14:15:59,115 - mmdet - INFO - pseudo gt: 70209.0 1841.0 11917.0 2391.0 1447.0 1770.0 1247.0 2700.0 2898.0 3497.0 536.0 574.0 322.0 2754.0 2873.0 1358.0 1485.0 1933.0 2671.0 2151.0 1497.0 301.0 1457.0 1461.0 2428.0 3072.0 3470.0 1706.0 1638.0 694.0 1740.0 717.0 1847.0 2245.0 927.0 965.0 1489.0 1595.0 1340.0 6045.0 1987.0 5341.0 1414.0 1998.0 1582.0 3667.0 2480.0 1516.0 1177.0 1526.0 1919.0 2075.0 833.0 1698.0 1790.0 1661.0 10450.0 1524.0 2442.0 1174.0 4220.0 1192.0 1648.0 1404.0 633.0 1624.0 822.0 1677.0 430.0 813.0 59.0 1533.0 690.0 7135.0 1730.0 1660.0 399.0 1310.0 51.0 597.0
2021-11-06 14:15:59,115 - mmdet - INFO - pseudo mining: 9500.0 28.0 1031.0 95.0 79.0 126.0 78.0 32.0 79.0 228.0 70.0 237.0 2.0 8.0 23.0 102.0 32.0 95.0 266.0 51.0 288.0 35.0 252.0 358.0 11.0 164.0 1.0 41.0 7.0 80.0 13.0 2.0 307.0 333.0 43.0 76.0 44.0 24.0 249.0 342.0 18.0 232.0 2.0 7.0 1.0 157.0 36.0 32.0 30.0 86.0 82.0 37.0 1.0 62.0 48.0 7.0 32.0 4.0 91.0 7.0 50.0 243.0 199.0 89.0 75.0 12.0 42.0 36.0 24.0 8.0 0.0 85.0 6.0 25.0 674.0 17.0 2.0 79.0 0.0 0.0
2021-11-06 14:16:53,431 - mmdet - INFO - Evaluating bbox...
2021-11-06 14:17:58,032 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.373 | bicycle | 0.149 | car | 0.273 |
| motorcycle | 0.191 | airplane | 0.305 | bus | 0.422 |
| train | 0.352 | truck | 0.137 | boat | 0.110 |
| traffic light | 0.178 | fire hydrant | 0.418 | stop sign | 0.472 |
| parking meter | 0.304 | bench | 0.089 | bird | 0.145 |
| cat | 0.359 | dog | 0.351 | horse | 0.328 |
| sheep | 0.271 | cow | 0.284 | elephant | 0.384 |
| bear | 0.449 | zebra | 0.410 | giraffe | 0.484 |
| backpack | 0.041 | umbrella | 0.157 | handbag | 0.042 |
| tie | 0.142 | suitcase | 0.078 | frisbee | 0.352 |
| skis | 0.070 | snowboard | 0.058 | sports ball | 0.300 |
| kite | 0.203 | baseball bat | 0.101 | baseball glove | 0.206 |
| skateboard | 0.223 | surfboard | 0.120 | tennis racket | 0.240 |
| bottle | 0.213 | wine glass | 0.180 | cup | 0.238 |
| fork | 0.019 | knife | 0.026 | spoon | 0.015 |
| bowl | 0.240 | banana | 0.074 | apple | 0.089 |
| sandwich | 0.097 | orange | 0.140 | broccoli | 0.119 |
| carrot | 0.049 | hot dog | 0.018 | pizza | 0.289 |
| donut | 0.157 | cake | 0.069 | chair | 0.094 |
| couch | 0.170 | potted plant | 0.102 | bed | 0.257 |
| dining table | 0.131 | toilet | 0.335 | tv | 0.310 |
| laptop | 0.311 | mouse | 0.371 | remote | 0.058 |
| keyboard | 0.231 | cell phone | 0.157 | microwave | 0.300 |
| oven | 0.118 | toaster | 0.006 | sink | 0.149 |
| refrigerator | 0.251 | book | 0.018 | clock | 0.351 |
| vase | 0.173 | scissors | 0.067 | teddy bear | 0.238 |
| hair drier | 0.000 | toothbrush | 0.031 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 14:18:53,642 - mmdet - INFO - Evaluating bbox...
2021-11-06 14:20:00,692 - mmdet - INFO -
+---------------+-------+--------------+-------+----------------+-------+
| category | AP | category | AP | category | AP |
+---------------+-------+--------------+-------+----------------+-------+
| person | 0.390 | bicycle | 0.170 | car | 0.297 |
| motorcycle | 0.237 | airplane | 0.285 | bus | 0.450 |
| train | 0.360 | truck | 0.142 | boat | 0.118 |
| traffic light | 0.192 | fire hydrant | 0.441 | stop sign | 0.481 |
| parking meter | 0.286 | bench | 0.113 | bird | 0.161 |
| cat | 0.405 | dog | 0.365 | horse | 0.372 |
| sheep | 0.288 | cow | 0.309 | elephant | 0.406 |
| bear | 0.477 | zebra | 0.434 | giraffe | 0.486 |
| backpack | 0.050 | umbrella | 0.176 | handbag | 0.044 |
| tie | 0.157 | suitcase | 0.092 | frisbee | 0.391 |
| skis | 0.062 | snowboard | 0.060 | sports ball | 0.313 |
| kite | 0.210 | baseball bat | 0.113 | baseball glove | 0.229 |
| skateboard | 0.227 | surfboard | 0.154 | tennis racket | 0.254 |
| bottle | 0.233 | wine glass | 0.183 | cup | 0.258 |
| fork | 0.030 | knife | 0.033 | spoon | 0.017 |
| bowl | 0.258 | banana | 0.093 | apple | 0.095 |
| sandwich | 0.154 | orange | 0.161 | broccoli | 0.125 |
| carrot | 0.064 | hot dog | 0.016 | pizza | 0.340 |
| donut | 0.223 | cake | 0.083 | chair | 0.113 |
| couch | 0.202 | potted plant | 0.121 | bed | 0.252 |
| dining table | 0.132 | toilet | 0.349 | tv | 0.367 |
| laptop | 0.340 | mouse | 0.386 | remote | 0.065 |
| keyboard | 0.257 | cell phone | 0.172 | microwave | 0.314 |
| oven | 0.151 | toaster | 0.032 | sink | 0.166 |
| refrigerator | 0.303 | book | 0.027 | clock | 0.374 |
| vase | 0.202 | scissors | 0.086 | teddy bear | 0.259 |
| hair drier | 0.000 | toothbrush | 0.031 | None | None |
+---------------+-------+--------------+-------+----------------+-------+
2021-11-06 14:21:25,132 - mmdet - INFO - current percent: 0.2
2021-11-06 14:21:25,132 - mmdet - INFO - update score thr (positive): (1.00-person) (0.96-bicycle) (0.99-car) (1.00-motorcycle) (0.99-airplane) (1.00-bus) (0.99-train) (0.97-truck) (0.96-boat) (0.98-traffic light) (1.00-fire hydrant) (1.00-stop sign) (0.99-parking meter) (0.93-bench) (0.99-bird) (1.00-cat) (0.99-dog) (0.99-horse) (1.00-sheep) (0.97-cow) (1.00-elephant) (0.99-bear) (1.00-zebra) (1.00-giraffe) (0.86-backpack) (0.99-umbrella) (0.78-handbag) (0.98-tie) (0.92-suitcase) (0.98-frisbee) (0.94-skis) (0.73-snowboard) (0.99-sports ball) (0.99-kite) (0.99-baseball bat) (0.99-baseball glove) (0.99-skateboard) (0.98-surfboard) (1.00-tennis racket) (0.97-bottle) (0.99-wine glass) (0.98-cup) (0.95-fork) (0.89-knife) (0.87-spoon) (0.98-bowl) (0.96-banana) (0.92-apple) (0.83-sandwich) (0.99-orange) (0.98-broccoli) (0.91-carrot) (0.92-hot dog) (0.99-pizza) (0.96-donut) (0.96-cake) (0.91-chair) (0.95-couch) (0.97-potted plant) (0.98-bed) (0.98-dining table) (1.00-toilet) (0.99-tv) (0.99-laptop) (1.00-mouse) (0.87-remote) (0.99-keyboard) (0.98-cell phone) (0.97-microwave) (0.98-oven) (0.05-toaster) (0.99-sink) (0.98-refrigerator) (0.88-book) (1.00-clock) (0.97-vase) (0.98-scissors) (1.00-teddy bear) (0.05-hair drier) (0.77-toothbrush)
2021-11-06 14:21:25,133 - mmdet - INFO - update score thr (ignore): (0.27-person) (0.19-bicycle) (0.34-car) (0.28-motorcycle) (0.44-airplane) (0.44-bus) (0.33-train) (0.41-truck) (0.24-boat) (0.36-traffic light) (0.47-fire hydrant) (0.70-stop sign) (0.23-parking meter) (0.23-bench) (0.15-bird) (0.48-cat) (0.49-dog) (0.33-horse) (0.88-sheep) (0.39-cow) (0.53-elephant) (0.50-bear) (0.12-zebra) (0.16-giraffe) (0.28-backpack) (0.23-umbrella) (0.22-handbag) (0.30-tie) (0.23-suitcase) (0.47-frisbee) (0.29-skis) (0.20-snowboard) (0.34-sports ball) (0.41-kite) (0.43-baseball bat) (0.52-baseball glove) (0.37-skateboard) (0.31-surfboard) (0.52-tennis racket) (0.31-bottle) (0.19-wine glass) (0.27-cup) (0.14-fork) (0.36-knife) (0.30-spoon) (0.38-bowl) (0.29-banana) (0.22-apple) (0.30-sandwich) (0.71-orange) (0.53-broccoli) (0.40-carrot) (0.87-hot dog) (0.40-pizza) (0.44-donut) (0.30-cake) (0.20-chair) (0.42-couch) (0.38-potted plant) (0.43-bed) (0.40-dining table) (0.54-toilet) (0.51-tv) (0.40-laptop) (0.65-mouse) (0.23-remote) (0.34-keyboard) (0.38-cell phone) (0.37-microwave) (0.37-oven) (0.05-toaster) (0.41-sink) (0.44-refrigerator) (0.28-book) (0.67-clock) (0.22-vase) (0.35-scissors) (0.73-teddy bear) (0.05-hair drier) (0.18-toothbrush)
2021-11-06 14:21:25,469 - mmdet - INFO - Exp name: labelmatch_0.9_1_1_8.py
2021-11-06 14:21:25,469 - mmdet - INFO - Iter [8000/40000] lr: 2.000e-02, eta: 16:47:43, time: 1.687, data_time: 0.032, memory: 26488, bbox_mAP: 0.2160, bbox_mAP_50: 0.3930, bbox_mAP_75: 0.2170, bbox_mAP_s: 0.1080, bbox_mAP_m: 0.2390, bbox_mAP_l: 0.2840, bbox_mAP_copypaste: 0.216 0.393 0.217 0.108 0.239 0.284, loss_rpn_cls: 0.0185, loss_rpn_bbox: 0.0438, loss_cls: 0.1233, acc: 95.2354, loss_bbox: 0.2128, loss_rpn_cls_unlabeled: 0.1011, loss_rpn_bbox_unlabeled: 0.1092, loss_cls_unlabeled: 0.2149, acc_unlabeled: 90.8170, loss_bbox_unlabeled: 0.2255, losses_cls_ig_unlabeled: 0.1582, pseudo_num: 1.9000, pseudo_num_ig: 6.2208, pseudo_num_mining: 0.5444, pseudo_num(acc): 0.6699, pseudo_num ig(acc): 0.3653, loss: 1.2072
2021-11-06 14:22:49,750 - mmdet - INFO - Iter [8050/40000] lr: 2.000e-02, eta: 17:06:58, time: 8.185, data_time: 6.526, memory: 26488, loss_rpn_cls: 0.0186, loss_rpn_bbox: 0.0434, loss_cls: 0.1222, acc: 95.2896, loss_bbox: 0.2182, loss_rpn_cls_unlabeled: 0.0994, loss_rpn_bbox_unlabeled: 0.1043, loss_cls_unlabeled: 0.1686, acc_unlabeled: 91.1283, loss_bbox_unlabeled: 0.1706, losses_cls_ig_unlabeled: 0.1637, pseudo_num: 1.8993, pseudo_num_ig: 6.2193, pseudo_num_mining: 0.5455, pseudo_num(acc): 0.6700, pseudo_num ig(acc): 0.3655, loss: 1.1091
2021-11-06 14:24:14,014 - mmdet - INFO - Iter [8100/40000] lr: 2.000e-02, eta: 17:04:34, time: 1.687, data_time: 0.028, memory: 26488, loss_rpn_cls: 0.0182, loss_rpn_bbox: 0.0434, loss_cls: 0.1201, acc: 95.3201, loss_bbox: 0.2166, loss_rpn_cls_unlabeled: 0.0920, loss_rpn_bbox_unlabeled: 0.1007, loss_cls_unlabeled: 0.1708, acc_unlabeled: 91.1281, loss_bbox_unlabeled: 0.1743, losses_cls_ig_unlabeled: 0.1622, pseudo_num: 1.8966, pseudo_num_ig: 6.2173, pseudo_num_mining: 0.5466, pseudo_num(acc): 0.6708, pseudo_num ig(acc): 0.3657, loss: 1.0981
2021-11-06 14:25:37,391 - mmdet - INFO - Iter [8150/40000] lr: 2.000e-02, eta: 17:02:07, time: 1.666, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0178, loss_rpn_bbox: 0.0430, loss_cls: 0.1195, acc: 95.3514, loss_bbox: 0.2130, loss_rpn_cls_unlabeled: 0.0943, loss_rpn_bbox_unlabeled: 0.1035, loss_cls_unlabeled: 0.1671, acc_unlabeled: 91.3369, loss_bbox_unlabeled: 0.1719, losses_cls_ig_unlabeled: 0.1600, pseudo_num: 1.8940, pseudo_num_ig: 6.2156, pseudo_num_mining: 0.5478, pseudo_num(acc): 0.6715, pseudo_num ig(acc): 0.3659, loss: 1.0900
2021-11-06 14:27:01,619 - mmdet - INFO - Iter [8200/40000] lr: 2.000e-02, eta: 16:59:44, time: 1.686, data_time: 0.030, memory: 26488, loss_rpn_cls: 0.0176, loss_rpn_bbox: 0.0434, loss_cls: 0.1190, acc: 95.3831, loss_bbox: 0.2135, loss_rpn_cls_unlabeled: 0.0958, loss_rpn_bbox_unlabeled: 0.1033, loss_cls_unlabeled: 0.1647, acc_unlabeled: 91.4075, loss_bbox_unlabeled: 0.1755, losses_cls_ig_unlabeled: 0.1571, pseudo_num: 1.8916, pseudo_num_ig: 6.2134, pseudo_num_mining: 0.5490, pseudo_num(acc): 0.6722, pseudo_num ig(acc): 0.3662, loss: 1.0899
2021-11-06 14:28:27,627 - mmdet - INFO - Iter [8250/40000] lr: 2.000e-02, eta: 16:57:28, time: 1.718, data_time: 0.027, memory: 26488, loss_rpn_cls: 0.0181, loss_rpn_bbox: 0.0424, loss_cls: 0.1201, acc: 95.3451, loss_bbox: 0.2144, loss_rpn_cls_unlabeled: 0.0933, loss_rpn_bbox_unlabeled: 0.1004, loss_cls_unlabeled: 0.1760, acc_unlabeled: 91.4733, loss_bbox_unlabeled: 0.1813, losses_cls_ig_unlabeled: 0.1539, pseudo_num: 1.8892, pseudo_num_ig: 6.2100, pseudo_num_mining: 0.5504, pseudo_num(acc): 0.6730, pseudo_num ig(acc): 0.3664, loss: 1.0999
2021-11-06 14:29:51,812 - mmdet - INFO - Iter [8300/40000] lr: 2.000e-02, eta: 16:55:07, time: 1.686, data_time: 0.034, memory: 26488, loss_rpn_cls: 0.0170, loss_rpn_bbox: 0.0408, loss_cls: 0.1141, acc: 95.4980, loss_bbox: 0.2045, loss_rpn_cls_unlabeled: 0.0963, loss_rpn_bbox_unlabeled: 0.1050, loss_cls_unlabeled: 0.1743, acc_unlabeled: 91.2595, loss_bbox_unlabeled: 0.1827, losses_cls_ig_unlabeled: 0.1564, pseudo_num: 1.8871, pseudo_num_ig: 6.2077, pseudo_num_mining: 0.5517, pseudo_num(acc): 0.6737, pseudo_num ig(acc): 0.3666, loss: 1.0910