Skip to content

This project conducts EDA and Hypothesis Testing on the AMCAT dataset, focusing on understanding the relationships between various features and salary. Through thorough analysis, and hypothesis testing to validate specific claims, valuable insights are gained regarding earning potential and key factors influencing salary in the dataset

License

Notifications You must be signed in to change notification settings

himanshu-03/Exploratory-Data-Analysis-of-AMEO-Dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Exploratory Data Analysis (EDA) and Hypothesis Testing on AMEO Dataset

📋 Project Overview

This project entails conducting Exploratory Data Analysis (EDA) on the AMCAT dataset, focusing on understanding various features and their relationships with the target variable, Salary. Additionally, hypothesis testing is performed to investigate specific claims, such as the relationship between education and earning potential, and to test the claim made in a Times of India article regarding the earning potential of Computer Science Engineering graduates.

📊 Key Features

  • EDA on AMCAT Dataset: An open-ended EDA is conducted to explore the AMCAT dataset, analyzing various features and their distributions, correlations, and relationships with the target variable, Salary.
  • Exploration of Gender and Specialization Preferences: The relationship between gender and specialization preferences among individuals in the AMCAT dataset is explored to understand potential patterns and trends.
  • Hypothesis Testing: Statistical tests are applied to validate hypotheses and investigate specific claims, including the earning potential of Computer Science Engineering graduates and the relationship between education and earning potential.

📂 Repository Structure

This repository contains the following files:

  • dataset/: Directory containing the AMEO Dataset.
  • notebooks/: Directory containing Jupyter notebooks for exploratory data analysis.
  • reports/: Directory containing the report files.
  • README.md: This file, providing an overview of the project and instructions.
  • requirements.txt: File listing all required dependencies for the project.

🚀 Usage

To replicate the analysis:

  1. Clone this repository to your local machine.
  2. Navigate to the project directory.
  3. Install the required dependencies using pip install -r requirements.txt.
  4. Run the Jupyter notebooks in the notebooks/ directory to perform data analysis and extract information.
  5. Review the results and conclusions drawn from the EDA and hypothesis testing.

📝 Conclusion

Through comprehensive EDA and hypothesis testing, insights into the AMCAT dataset and its relationship with salary are gained. The analysis sheds light on gender and specialization preferences, validates specific claims regarding earning potential, and provides valuable insights for stakeholders.

🪪 License

This project follows the MIT LICENSE.


Connect with me

Github     LinkedIn     Twitter     Instagram     Gmail   

(Back to top)

About

This project conducts EDA and Hypothesis Testing on the AMCAT dataset, focusing on understanding the relationships between various features and salary. Through thorough analysis, and hypothesis testing to validate specific claims, valuable insights are gained regarding earning potential and key factors influencing salary in the dataset

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published