-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_bags.py
91 lines (79 loc) · 3.53 KB
/
make_bags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf
import numpy as np
from helper import *
import unicodedata
import re
#读取原始数据
relation2id = json.loads(open("./data/rel2id.json",encoding='utf-8').read())
train_data = ddict(lambda: {"rels": ddict(list)})
miss_cnt=0
count=0
def unicode_to_ascii(s):
return ''.join(c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn')
def clean_string(str):
w = str
w = unicode_to_ascii(w.strip())
w = re.sub(r"([?.!,])", r" \1 ", w)
w = re.sub(r"[^a-zA-Z]+", " ", w)
w = re.sub(r'[" "]+', " ", w)
w = w.rstrip().strip()
return w
with open("./data/train.json", "r",encoding='utf-8') as f:
for i, line in enumerate(f):
data = json.loads(line.strip())
_id = "{}_{}".format(data["head"]["word"], data["tail"]["word"])
train_data[_id]["head_id"] = data["head"]["id"]
train_data[_id]["tail_id"] = data["tail"]["id"]
train_data[_id]["head"] = clean_string(data["head"]["word"])
train_data[_id]["tail"] = clean_string(data["tail"]["word"])
train_data[_id]["rels"][relation2id.get(data["relation"],
relation2id["NA"])].append(
{"sent": clean_string(data["sentence"])})
if i%10000==0:
print("reading raw train data completed {}/{},{}".format(i,miss_cnt,time.strftime("%d_%m_%Y")+"_"+time.strftime("%H:%M:%S")))
# print(train_data)
test_data=ddict(lambda:{"sents":[],"rels":set()})
with open("./data/test.json","r",encoding='utf-8') as f:
for i,line in enumerate(f):
data=json.loads(line.strip())
_id="{}_{}".format(data["head"]["word"],data["tail"]["word"])
test_data[_id]["head_id"]=data["head"]["id"]
test_data[_id]["tail_id"]=data["tail"]["id"]
test_data[_id]["head"]=clean_string(data["head"]["word"])
test_data[_id]["tail"]=clean_string(data["tail"]["word"])
test_data[_id]["rels"].add(relation2id.get(data["relation"],relation2id["NA"]))
test_data[_id]["sents"].append({"sent":clean_string(data["sentence"])})
if i%10000==0:
print("reading raw test data completed {}/{},{}".format(i,miss_cnt,time.strftime("%d_%m_%Y")+"_"+time.strftime("%H:%M:%S")))
#将原始数据按包分组
# print(test_data)
count=0
with open("./data/train_bags.json","w",encoding='utf-8') as f:
for _id,data in train_data.items():
for rel,sents in data["rels"].items():
entry={}
entry["head"]=data["head"]
entry["tail"]=data["tail"]
entry["head_id"]=data["head_id"]
entry["tail_id"]=data["tail_id"]
entry["sentence"]=sents
entry["relation"]=[rel]
f.write(json.dumps(entry,ensure_ascii=False)+"\n")
count+=1
if count%10000==0:
print("writing train bags completed {},{}".format(count,time.strftime("%d_%m_%Y")+"_"+time.strftime("%H:%M:%S")))
count=0
with open("./data/test_bags.json","w",encoding='utf-8') as f:
for _id,data in test_data.items():
entry={}
entry["head"]=data["head"]
entry["tail"]=data["tail"]
entry["head_id"]=data["head_id"]
entry["tail_id"]=data["tail_id"]
entry["sentence"]=data["sents"]
entry["relation"]=list(data["rels"])
f.write(json.dumps(entry,ensure_ascii=False)+"\n")
count+=1
if count%10000==0:
print("Writing test bags completed {},{}".format(count,time.strftime("%d_%m_%Y")+"_"+time.strftime("%H:%M:%S")))