-
Notifications
You must be signed in to change notification settings - Fork 20
/
opencv_dnn.py
548 lines (489 loc) · 25.2 KB
/
opencv_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import argparse
import ast
import collections
import cv2
import imagehash as ih
import numpy as np
from operator import itemgetter
import os
import pandas as pd
from PIL import Image
import time
from config import Config
import fetch_data
"""
As of the current version, the YOLO network has been removed from this code during optimization.
It was found out that YOLO was adding too much processing delay, and the benefits from using it couldn't justify
such heavy cost.
If you're interested to see the implementation using YOLO, please check out the previous commit:
https://github.com/hj3yoo/mtg_card_detector/tree/dea64611730c84a59c711c61f7f80948f82bcd31
"""
def calc_image_hashes(card_pool, save_to=None, hash_size=None):
"""
Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
:param card_pool: pandas dataframe containing all card information
:param save_to: path for the pickle file to be saved
:param hash_size: param for pHash algorithm
:return: pandas dataframe
"""
if hash_size is None:
hash_size = [16, 32]
elif isinstance(hash_size, int):
hash_size = [hash_size]
# Since some double-faced cards may result in two different cards, create a new dataframe to store the result
new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
for hs in hash_size:
new_pool['card_hash_%d' % hs] = np.NaN
#new_pool['art_hash_%d' % hs] = np.NaN
for ind, card_info in card_pool.iterrows():
if ind % 100 == 0:
print('Calculating hashes: %dth card' % ind)
card_names = []
# Double-faced cards have a different json format than normal cards
if card_info['layout'] in ['transform', 'double_faced_token']:
if isinstance(card_info['card_faces'], str):
card_faces = ast.literal_eval(card_info['card_faces'])
else:
card_faces = card_info['card_faces']
for i in range(len(card_faces)):
card_names.append(card_faces[i]['name'])
else: # if card_info['layout'] == 'normal':
card_names.append(card_info['name'])
for card_name in card_names:
# Fetch the image - name can be found based on the card's information
card_info['name'] = card_name
img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
card_info['collector_number'],
fetch_data.get_valid_filename(card_info['name']))
card_img = cv2.imread(img_name)
# If the image doesn't exist, download it from the URL
if card_img is None:
fetch_data.fetch_card_image(card_info,
out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set']))
card_img = cv2.imread(img_name)
if card_img is None:
print('WARNING: card %s is not found!' % img_name)
# Compute value of the card's perceptual hash, then store it to the database
#img_art = Image.fromarray(card_img[121:580, 63:685]) # For 745*1040 size card image
img_card = Image.fromarray(card_img)
for hs in hash_size:
card_hash = ih.phash(img_card, hash_size=hs)
card_info['card_hash_%d' % hs] = card_hash
#art_hash = ih.phash(img_art, hash_size=hs)
#card_info['art_hash_%d' % hs] = art_hash
new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
if save_to is not None:
new_pool.to_pickle(save_to)
return new_pool
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
def order_points(pts):
"""
initialzie a list of coordinates that will be ordered such that the first entry in the list is the top-left,
the second entry is the top-right, the third is the bottom-right, and the fourth is the bottom-left
:param pts: array containing 4 points
:return: ordered list of 4 points
"""
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def four_point_transform(image, pts):
"""
Transform a quadrilateral section of an image into a rectangular area
From: www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
:param image: source image
:param pts: 4 corners of the quadrilateral
:return: rectangular image of the specified area
"""
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x-coordiates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
mat = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, mat, (maxWidth, maxHeight))
# If the image is horizontally long, rotate it by 90
if maxWidth > maxHeight:
center = (maxHeight / 2, maxHeight / 2)
mat_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
warped = cv2.warpAffine(warped, mat_rot, (maxHeight, maxWidth))
# return the warped image
return warped
def remove_glare(img):
"""
Reduce the effect of glaring in the image
Inspired from:
http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
The idea is to find area that has low saturation but high value, which is what a glare usually look like.
:param img: source image
:return: corrected image with glaring smoothened out
"""
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
_, s, v = cv2.split(img_hsv)
non_sat = (s < 32) * 255 # Find all pixels that are not very saturated
# Slightly decrease the area of the non-satuared pixels by a erosion operation.
disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
non_sat = cv2.erode(non_sat.astype(np.uint8), disk)
# Set all brightness values, where the pixels are still saturated to 0.
v[non_sat == 0] = 0
# filter out very bright pixels.
glare = (v > 200) * 255
# Slightly increase the area for each pixel
glare = cv2.dilate(glare.astype(np.uint8), disk)
glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200
glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR)
corrected = np.where(glare, glare_reduced, img)
return corrected
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000):
"""
Find contours of all cards in the image
:param img: source image
:param thresh_c: value of the constant C for adaptive thresholding
:param kernel_size: dimension of the kernel used for dilation and erosion
:param size_thresh: threshold for size (in pixel) of the contour to be a candidate
:return: list of candidate contours
"""
# Typical pre-processing - grayscale, blurring, thresholding
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.medianBlur(img_gray, 5)
img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
# Dilute the image, then erode them to remove minor noises
kernel = np.ones(kernel_size, np.uint8)
img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
img_erode = cv2.erode(img_dilate, kernel, iterations=1)
# Find the contour
_, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
#print('no contours')
return []
# The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
# their previous and next node
# Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
# The candidate contour must be rectangle (has 4 points) and should be larger than a threshold
cnts_rect = []
stack = [(0, hier[0][0])]
while len(stack) > 0:
i_cnt, h = stack.pop()
i_next, i_prev, i_child, i_parent = h
if i_next != -1:
stack.append((i_next, hier[0][i_next]))
cnt = cnts[i_cnt]
size = cv2.contourArea(cnt)
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
if size >= size_thresh and len(approx) == 4:
cnts_rect.append(approx)
else:
if i_child != -1:
stack.append((i_child, hier[0][i_child]))
return cnts_rect
def draw_card_graph(exist_cards, card_pool, f_len):
"""
Given the history of detected cards in the current and several previous frames, draw a simple graph
displaying the detected cards with its confidence level
:param exist_cards: History of all detected cards in the previous (f_len) frames
:param card_pool: pandas dataframe of all card's information
:param f_len: length of windows (in frames) to consider for confidence level
:return:
"""
# Lots of constants to set the dimension of each elements
w_card = 63 # Width of the card image displayed
h_card = 88
gap = 25 # Offset between each elements
gap_sm = 10 # Small offset
w_bar = 300 # Length of the confidence bar at 100%
h_bar = 12
txt_scale = 0.8
n_cards_p_col = 4 # Number of cards displayed per one column
w_img = gap + (w_card + gap + w_bar + gap) * 2 # Dimension of the entire graph (for 2 columns)
h_img = 480
img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8)
x_anchor = gap
y_anchor = gap
i = 0
# Cards are displayed from the most confident to the least
# Confidence level is calculated by number of frames that the card was detected in
for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]:
card_name = key[:key.find('(') - 1]
card_set = key[key.find('(') + 1:key.find(')')]
confidence = sum(val) / f_len
card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0]
img_name = '%s/card_img/tiny/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
card_info['collector_number'],
fetch_data.get_valid_filename(card_info['name']))
# If the card image is not found, just leave it blank
if os.path.exists(img_name):
card_img = cv2.imread(img_name)
else:
card_img = np.ones((h_card, w_card, 3)) * 255
cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2),
cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2)
# Insert the card image, card name, and confidence bar to the graph
img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
cv2.putText(img_graph, '%s (%s)' % (card_name, card_set),
(x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX,
txt_scale, (255, 255, 255), 1)
cv2.rectangle(img_graph, (x_anchor + w_card + gap, y_anchor + h_card - (gap_sm + h_bar)),
(x_anchor + w_card + gap + int(w_bar * confidence), y_anchor + h_card - gap_sm), (0, 255, 0),
thickness=cv2.FILLED)
y_anchor += h_card + gap
i += 1
if i % n_cards_p_col == 0:
x_anchor += w_card + gap + w_bar + gap
y_anchor = gap
pass
return img_graph
def detect_frame(img, card_pool, hash_size=32, size_thresh=10000,
out_path=None, display=True, debug=False):
"""
Identify all cards in the input frame, display or save the frame if needed
:param img: input frame
:param card_pool: pandas dataframe of all card's information
:param hash_size: param for pHash algorithm
:param size_thresh: threshold for size (in pixel) of the contour to be a candidate
:param out_path: path to save the result
:param display: flag for displaying the result
:param debug: flag for debug mode
:return: list of detected card's name/set and resulting image
"""
img_result = img.copy() # For displaying and saving
det_cards = []
# Detect contours of all cards in the image
cnts = find_card(img_result, size_thresh=size_thresh)
for i in range(len(cnts)):
cnt = cnts[i]
# For the region of the image covered by the contour, transform them into a rectangular image
pts = np.float32([p[0] for p in cnt])
img_warp = four_point_transform(img, pts)
# To identify the card from the card image, perceptual hashing (pHash) algorithm is used
# Perceptual hash is a hash string built from features of the input medium. If two media are similar
# (ie. has similar features), their resulting pHash value will be very close.
# Using this property, the matching card for the given card image can be found by comparing pHash of
# all cards in the database, then finding the card that results in the minimal difference in pHash value.
'''
img_art = img_warp[47:249, 22:294]
img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten()
card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
'''
img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
# the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size]
card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash))
min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
card_name = min_card['name']
card_set = min_card['set']
det_cards.append((card_name, card_set))
hash_diff = min_card['hash_diff']
# Render the result, and display them if needed
cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
if debug:
# cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
cv2.imshow('card#%d' % i, img_warp)
if display:
cv2.imshow('Result', img_result)
cv2.waitKey(0)
if out_path is not None:
cv2.imwrite(out_path, img_result.astype(np.uint8))
return det_cards, img_result
def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
out_path=None, display=True, show_graph=True, debug=False):
"""
Identify all cards in the continuous video stream, display or save the result if needed
:param capture: input video stream
:param card_pool: pandas dataframe of all card's information
:param hash_size: param for pHash algorithm
:param size_thresh: threshold for size (in pixel) of the contour to be a candidate
:param out_path: path to save the result
:param display: flag for displaying the result
:param show_graph: flag to show graph
:param debug: flag for debug mode
:return: list of detected card's name/set and resulting image
:return:
"""
# Get the dimension of the output video, and set it up
if show_graph:
img_graph = draw_card_graph({}, pd.DataFrame(), -1) # Black image of the graph just to get the dimension
width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
else:
width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
if out_path is not None:
vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height))
max_num_obj = 0
f_len = 10 # number of frames to consider to check for existing cards
exist_cards = {}
try:
while True:
ret, frame = capture.read()
start_time = time.time()
if not ret:
# End of video
print("End of video. Press any key to exit")
cv2.waitKey(0)
break
# Detect all cards from the current frame
det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh,
out_path=None, display=False, debug=debug)
if show_graph:
# If the card was already detected in the previous frame, append 1 to the list
# If the card previously detected was not found in this trame, append 0 to the list
# If the card wasn't previously detected, make a new list and add 1 to it
# If the same card is detected multiple times in the same frame, keep track of the duplicates
# The confidence will be calculated based on the number of frames the card was detected for
det_cards_count = collections.Counter(det_cards).items()
det_cards_list = []
for card, count in det_cards_count:
card_name, card_set = card
for i in range(count): 1
key = '%s (%s) #%d' % (card_name, card_set, i + 1)
det_cards_list.append(key)
gone = []
for key, val in exist_cards.items():
if key in det_cards_list:
exist_cards[key] = exist_cards[key][1 - f_len:] + [1]
else:
exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
if len(val) == f_len and sum(val) == 0:
gone.append(key)
for key in det_cards_list:
if key not in exist_cards.keys():
exist_cards[key] = [1]
for key in gone:
exist_cards.pop(key)
# Draw the graph based on the history of detected cards, then concatenate it with the result image
img_graph = draw_card_graph(exist_cards, card_pool, f_len)
img_save = np.zeros((height, width, 3), dtype=np.uint8)
img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
else:
img_save = img_result
# Display the result
if display:
cv2.imshow('result', img_save)
if debug:
max_num_obj = max(max_num_obj, len(det_cards))
for i in range(len(det_cards), max_num_obj):
cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
elapsed_ms = (time.time() - start_time) * 1000
print('Elapsed time: %.2f ms' % elapsed_ms)
if out_path is not None:
vid_writer.write(img_save.astype(np.uint8))
cv2.waitKey(1)
except KeyboardInterrupt:
capture.release()
if out_path is not None:
vid_writer.release()
cv2.destroyAllWindows()
def main(args):
# Specify paths for all necessary files
pck_path = os.path.abspath('card_pool.pck')
if os.path.isfile(pck_path):
card_pool = pd.read_pickle(pck_path)
else:
print('Warning: pickle for card database %s is not found!' % pck_path)
# Merge database for all cards, then calculate pHash values of each, store them
df_list = []
for set_name in Config.all_set_list:
csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name)
df = fetch_data.load_all_cards_text(csv_name)
df_list.append(df)
card_pool = pd.concat(df_list, sort=True)
card_pool.reset_index(drop=True, inplace=True)
card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
calc_image_hashes(card_pool, save_to=pck_path)
ch_key = 'card_hash_%d' % args.hash_size
card_pool = card_pool[['name', 'set', 'collector_number', ch_key]]
# Processing time is almost linear to the size of the database
# Program can be much faster if the search scope for the card can be reduced
card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
# ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
# significantly increases speed for subtracting hashes in the future.
card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
# If the test file isn't given, use webcam to capture video
if args.in_path is None:
capture = cv2.VideoCapture(0)
detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
display=args.display, show_graph=args.show_graph, debug=args.debug)
capture.release()
else:
# Save the detection result if args.out_path is provided
if args.out_path is None:
out_path = None
else:
f_name = os.path.split(args.in_path)[1]
out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')])
if not os.path.isfile(args.in_path):
print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path))
return
# Check if test file is image or video
test_ext = args.in_path[args.in_path.find('.') + 1:]
if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
# Test file is an image
img = cv2.imread(args.in_path)
detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
debug=args.debug)
else:
# Test file is a video
capture = cv2.VideoCapture(args.in_path)
detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
show_graph=args.show_graph, debug=args.debug)
capture.release()
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank',
type=str)
parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result',
type=str)
parser.add_argument('-hs', '--hash_size', dest='hash_size',
help='Size of the hash for pHash algorithm', type=int, default=16)
parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true',
default=False)
parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False)
parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output',
action='store_true', default=False)
args = parser.parse_args()
if not args.display and args.out_path is None:
# Then why the heck are you running this thing in the first place?
print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.')
exit()
main(args)