-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstep7_multistep.m
197 lines (169 loc) · 7.69 KB
/
step7_multistep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
%% This script generates the results in Table 7 of the manuscript
% Created 08 Jul 2021, 09:35 BST.
% Script last revised 21 Nov 2022
% @author: Arman Hassanniakalager GitHub: https://github.com/hkalager
% Common disclaimers apply. Subject to change at all time.
clear;
clc;
if ispc
act_fld=[pwd,'\'];
addpath([act_fld,'\Dataset_ETFS']);
addpath([act_fld,'\kfwe']);
elseif ismac
act_fld=[pwd,'/'];
addpath([act_fld,'/Dataset_ETFS']);
addpath([act_fld,'/kfwe']);
end
%tickerlistaa={'SPY','QQQ','SHV','LQD','GLD','USO'};
main_ticker={'SPY','QQQ','GLD','USO'};
loss_b_range=[-5,-2,0,1];
Benchmark={'GARCH','GJR-GARCH','HAR'};
freq=5; %mins
%oos_period_range_end=oos_period_range_test+oos_per-1;
try
Spec_data=load('RV_Pool_325_Spec_tbl.mat');
catch
record_mdlspec;
Spec_data=load('RV_Pool_325_Spec_tbl.mat');
end
Bsize=1000;
Bwindow=10;
IS_per=252;
%% Study period
oos_period_range_test=2014:2020;
%% Liang specification
Max_lambda=0.95;
N_bins=20;
gamma_range=.05:.05:.95;
%% FDR setting
fdrtarget=0.1;
rng(0);
%% Setting for RSW
gamma_rsw=.1;
%% The benchmark indexes
bench_ind=zeros(size(Benchmark));
family_class=Spec_data.Mdl_Class;
for s=1:numel(bench_ind)
sel_bench=Benchmark{s};
idx_bench=find(strcmp(family_class,sel_bench));
bench_ind(s)=idx_bench(1);
end
perf_table=table();
iter=0;
for step_size=[5,22]
disp(['Calculations started for ',num2str(step_size),'-step ahead prediction ...']);
for t=1:numel(main_ticker)
flname=[act_fld,main_ticker{t},'_Pool_M',num2str(freq),...
'_OOS_2014_2020_',num2str(IS_per),'.mat'];
load(flname,'oosdate','oos_ser','TF1SMP','TF2SMP','tbl0');
oosdate_red=oosdate;
oosdate_red(weekday(oosdate_red)==1)=[];
disp(['Calculations started for ',main_ticker{t},' ...']);
oos_ser(oos_ser>.01)=.01;
oos_ser(oos_ser<1e-8)=1e-8;
oos_ser(isnan(oos_ser))=.01;
oos_ser_tested=oos_ser;
modelscount=size(oos_ser_tested,2);
oos_idx_range=1:step_size:size(oos_ser_tested,1);
target_idx=oos_idx_range+TF1SMP-1;
poolset_ser=oos_ser_tested(oos_idx_range,:);
target=zeros(size(oos_idx_range,2),1);
for s=1:numel(target_idx)
sel_target_idx=target_idx(s);
cap_size=min([sel_target_idx+step_size-1,size(tbl0,1)]);
target(s)=mean(tbl0{sel_target_idx:cap_size,'RVDaily'});
end
%sigma2=tbl0{TF1SMP+poolsetind(1)-1:TF1SMP+poolsetind(end)-1,4+voltyp};
indices=stationary_bootstrap((1:size(poolset_ser,1))',Bsize,Bwindow);
Perf=zeros(1,modelscount);
Perf_B=zeros(Bsize,modelscount);
for l=1:numel(loss_b_range)
tic;
iter=iter+1;
disp(['Case robust loss b = ',num2str(loss_b_range(l)),' ...']);
perf_table{iter,'Asset'}=main_ticker(t);
perf_table{iter,'h'}={step_size};
perf_table{iter,'Robust_b'}=loss_b_range(l);
[Perf,loss_ser]=robust_loss_fn(poolset_ser,target,loss_b_range(l));
for b=1:Bsize
bsdata=poolset_ser(indices(:,b),:);
bstarget=target(indices(:,b),:);
Perf_B(b,:)=robust_loss_fn(bsdata,bstarget,loss_b_range(l));
end
% MCS test first
[INCLUDEDR] = mcs(loss_ser,fdrtarget,Bsize,Bwindow) ;
perf_table{iter,'MCS_included'}=numel(INCLUDEDR);
bucket_mcs=poolset_ser(:,INCLUDEDR);
bucket_mcs_mse=mean(abs(robust_loss_fn(bucket_mcs,target,0)),'omitnan');
perf_table{iter,'MCS_bucket_MSE'}=bucket_mcs_mse;
bucket_mcs_qlike=mean(abs(robust_loss_fn(bucket_mcs,target,-2)),'omitnan');
perf_table{iter,'MCS_bucket_QLIKE'}=bucket_mcs_qlike;
disp(['Number of included models by MCS is ', num2str(numel(INCLUDEDR))]);
for bi=1:numel(Benchmark)
Bench_Perf=Perf(bench_ind(bi));
Bench_Ser=poolset_ser(:,bench_ind(bi));
[~,maxind]=max(Perf);
Bench_Perf_B=Perf_B(:,bench_ind(bi));
pvalues=mypval(Bench_Perf-Perf',(Perf_B-Perf));
try
[pi_0hat,lambda]=est_pi0_disc(pvalues, N_bins,Max_lambda);
catch
pi_0hat=1;
end
%pi_0hat=max(pi_0hat,.5);
opt_gamma=gamma_finder(Bench_Perf-Perf',pvalues,gamma_range,pi_0hat);
[pi_aplushat, pi_aminushat] = compute_pi_ahat(pvalues, Bench_Perf-Perf', pi_0hat, opt_gamma);
[PORTFDR, FDRhat] = my_portfolio_FDR_mod(fdrtarget, Bench_Perf-Perf', pvalues, pi_0hat);
% The unlilely case where a benchmark has the best
% performance
PORTFDR=(FDRhat~=2).*PORTFDR;
lbl_column_fdr=['FDR_',Benchmark{bi}];
perf_table{iter,lbl_column_fdr}=sum(PORTFDR);
disp(['Number of significant models with FDR and benchmark ',...
Benchmark{bi},' is ', num2str(sum(PORTFDR))]);
if sum(PORTFDR)==0
PORTFDR(Benchmark{bi})=1;
end
bucket_fdr=poolset_ser(:,PORTFDR==1);
bench_MSE_lbl=[Benchmark{bi},'_MSE'];
bench_mse_val=abs(robust_loss_fn(Bench_Ser,target,0));
perf_table{iter,bench_MSE_lbl}=bench_mse_val;
bench_qlike_lbl=[Benchmark{bi},'_QLIKE'];
bench_qlike_val=abs(robust_loss_fn(Bench_Ser,target,-2));
perf_table{iter,bench_qlike_lbl}=bench_qlike_val;
lbl_column_fdr_bucket_MSE=['FDR_',Benchmark{bi},'_bucket_MSE'];
bucket_fdr_mse=mean(abs(robust_loss_fn(bucket_fdr,target,0)),'omitnan');
perf_table{iter,lbl_column_fdr_bucket_MSE}=bucket_fdr_mse;
lbl_column_fdr_bucket_QLIKE=['FDR_',Benchmark{bi},'_bucket_QLIKE'];
bucket_fdr_qlike=mean(abs(robust_loss_fn(bucket_fdr,target,-2)),'omitnan');
perf_table{iter,lbl_column_fdr_bucket_QLIKE}=bucket_fdr_qlike;
% RSW-FDP Test
k_rsw=1;
reject_set_rsw=kfwe(Bench_Perf-Perf,(Perf_B-Perf),k_rsw,fdrtarget,modelscount);
while numel(reject_set_rsw)>=(k_rsw/gamma_rsw-1)
k_rsw=k_rsw+1;
reject_set_rsw=kfwe(Bench_Perf-Perf,(Perf_B-Perf),k_rsw,fdrtarget,modelscount);
end
lbl_column_rsw=['KStepM_',Benchmark{bi}];
perf_table{iter,lbl_column_rsw}=numel(reject_set_rsw);
disp(['Number of significant models with kStepM and benchmark ',...
Benchmark{bi},' is ', num2str(numel(reject_set_rsw))]);
if numel(reject_set_rsw)==0
reject_set_rsw=bench_ind(bi);
end
bucket_rsw=poolset_ser(:,reject_set_rsw);
lbl_column_rsw_bucket_MSE=['KStepM_',Benchmark{bi},'_bucket_MSE'];
bucket_rsw_mse=mean(abs(robust_loss_fn(bucket_rsw,target,0)),'omitnan');
perf_table{iter,lbl_column_rsw_bucket_MSE}=bucket_rsw_mse;
lbl_column_rsw_bucket_QLIKE=['KStepM_',Benchmark{bi},'_bucket_QLIKE'];
bucket_rsw_qlike=mean(abs(robust_loss_fn(bucket_rsw,target,-2)),'omitnan');
perf_table{iter,lbl_column_rsw_bucket_QLIKE}=bucket_rsw_qlike;
end
toc;
end
end
end
fl_lbl=['Quantify_',num2str(oos_period_range_test(1)),...
'_',num2str(oos_period_range_test(end)),'_M',num2str(freq),...
'_',num2str(IS_per),'_multiH.csv'];
writetable(perf_table,fl_lbl);