-
Notifications
You must be signed in to change notification settings - Fork 11
/
generate_box_dataset.py
326 lines (287 loc) · 14.7 KB
/
generate_box_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#import _init_path
import os
os.environ['CUDA_VISIBLE_DEVICES']='3'
import numpy as np
import pickle
import torch
import logging
from torch.utils.data import DataLoader
from lib.datasets.kitti_boxgen_dataset import KittiDataset
import lib.utils.kitti_utils as kitti_utils
from lib.utils.distance import distance_2, distance_2_numpy, cos_distance, cos_matrix_distance
from torch_cluster import fps
from lib.config import cfg, cfg_from_file, save_config_to_file
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from lib.utils.bbox_transform import decode_center_target
import warnings
warnings.filterwarnings('ignore')
split='small_val'
if split == 'train':
dataset = KittiDataset('/raid/meng/Dataset/Kitti/object', split=split,noise='label_noise')
else:
dataset = KittiDataset('/raid/meng/Dataset/Kitti/object', split=split)
data_loader = DataLoader(dataset, batch_size=1, shuffle=False, pin_memory=True, num_workers=1)
save_dir = '/raid/meng/Dataset/Kitti/object/training/boxes_dataset'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
ckpt_file = '/raid/meng/Pointcloud_Detection/PointRCNN4_weak/output/rpn/weaklyRPN0500/410_floss03_8000/ckpt/checkpoint_iter_07620.pth'
cfg_from_file('/raid/meng/Pointcloud_Detection/PointRCNN1.1_weak/tools/cfgs/weaklyRPN.yaml')
cfg.RPN.SCORE_THRESH = 0.1
PROP_DIST = 0.3
BACKGROUND_ADDING = False
BACK_THRESH = 0.3
COSINE_DISTANCE = False
COS_THRESH = 0.3
from lib.net.point_rcnn import PointRCNN
model = PointRCNN(num_classes=data_loader.dataset.num_class, use_xyz=True, mode='TEST')
model.cuda()
checkpoint = torch.load(ckpt_file)
model_state = checkpoint['model_state']
update_model_state = {key: val for key, val in model_state.items() if key in model.state_dict()}
state_dict = model.state_dict()
state_dict.update(update_model_state)
model.load_state_dict(state_dict)
update_keys = update_model_state.keys().__len__()
model.eval()
max_point=0
instance_id = 0
fg_sum=0
Gfg_sum=0
bg_sum=0
recall_count = 0
gt_count = 0
ALL_database = []
for data in dataset:
# data loading
sample_id = data['sample_id']
if sample_id > 1085:
break
#if sample_id<40: continue
image = data['image'][:,:,[2,1,0]]
calib = data['calib']
pts_lidar = data['pts_lidar']
pts_rect = data['pts_rect']
pts_reflect = data['pts_reflect']
pts_image = data['pts_image']
pts_input = np.concatenate((pts_rect, pts_reflect.reshape(-1, 1)), axis=1)[np.newaxis,:]
if not split == 'test':
gt_boxes3d_cam = data['gt_boxes_3d_cam']
gt_boxes2d_cam = data['gt_boxes2d_cam']
noise_gt_boxes3d_cam = data['noise_gt_boxes3d_cam']
gt_alpha = data['gt_alpha']
# model inference
inputs = torch.from_numpy(pts_input).cuda(non_blocking=True).float()
#inputs = inputs[:, torch.argsort(-inputs[0, :, 2])]
input_data = {'pts_input': inputs}
ret_dict = model.rpn_forward(input_data)
rpn_cls, rpn_reg = ret_dict['rpn_cls'], ret_dict['rpn_reg']
rpn_backbone_xyz, rpn_backbone_features = ret_dict['backbone_xyz'], ret_dict['backbone_features']
# stage score parsing
rpn_scores_raw = rpn_cls.view(-1, 1)
rpn_scores_norm = torch.sigmoid(rpn_scores_raw)
rpn_input_scores = rpn_scores_norm.clone()
rpn_backbone_xyz = rpn_backbone_xyz.view(-1, rpn_backbone_xyz.shape[-1])
rpn_backbone_features = rpn_backbone_features.view(-1, rpn_backbone_features.shape[-2])
inputs = inputs.view(-1, 4)
# generate rois
rpn_rois = decode_center_target(rpn_backbone_xyz, rpn_reg.view(-1, rpn_reg.shape[-1]),
loc_scope=cfg.RPN.LOC_SCOPE,
loc_bin_size=cfg.RPN.LOC_BIN_SIZE,
).view(-1, 3)
rpn_reg_dist = (rpn_rois - rpn_backbone_xyz).clone()
#similarity = torch.cosine_similarity(rpn_backbone_xyz[:,[0,2]], rpn_reg_dist[:,[0,2]], dim=1)
#similarity = similarity.detach().cpu().numpy()
# Thresh select
rpn_mask = (rpn_scores_norm.view(-1) > cfg.RPN.SCORE_THRESH) & (rpn_reg_dist[:,[0,2]].pow(2).sum(-1).sqrt()>0.2) #\
# & (similarity > -0.7)
if rpn_mask.float().sum() == 0: continue
rpn_rois = rpn_rois[rpn_mask]
rpn_scores_raw = rpn_scores_raw.view(-1)[rpn_mask]
rpn_scores_norm = rpn_scores_norm.view(-1)[rpn_mask]
rpn_reg = rpn_reg.view(-1, rpn_reg.shape[-1])[rpn_mask]
rpn_backbone_xyz = rpn_backbone_xyz[rpn_mask]
# radius NMS
# sort by center score
sort_points = torch.argsort(-rpn_scores_norm)
rpn_rois = rpn_rois[sort_points]
rpn_scores_norm = rpn_scores_norm[sort_points]
rpn_scores_raw = rpn_scores_raw[sort_points]
if rpn_rois.shape[0] > 1:
keep_id = [0]
prop_prop_distance = distance_2(rpn_rois[:, [0, 2]], rpn_rois[:, [0, 2]])
for i in range(1, rpn_rois.shape[0]):
# if torch.min(prop_prop_distance[:i, i], dim=-1)[0] > 0.3:
if torch.min(prop_prop_distance[keep_id, i], dim=-1)[0] > PROP_DIST:
keep_id.append(i)
rpn_pred_center = rpn_rois[keep_id]
rpn_scores_norm = rpn_scores_norm[keep_id]
rpn_scores_raw = rpn_scores_raw[keep_id]
else:
rpn_pred_center = rpn_rois
rpn_scores_norm = rpn_scores_norm
rpn_scores_raw = rpn_scores_raw
# # # # # todo visualization cluster distance estimation
# inputs = inputs.detach().cpu().numpy()
# rpn_cls = rpn_cls.detach().cpu().numpy()
#
# point_center = rpn_pred_center
# point_center_score = rpn_scores_norm
# fig = plt.figure(figsize=(10, 10))
# plt.axes(facecolor='silver')
# plt.axis([-30,30,0,70])
# point_center_plt = point_center.cpu().numpy()
# plt.title('point_regressed_center %06d'%sample_id)
# plt.scatter(inputs[:, 0], inputs[:, 2], s=15, c=inputs[:, 1], edgecolor='none',
# cmap=plt.get_cmap('Blues'), alpha=1, marker='.', vmin=-1, vmax=2)
# if point_center.shape[0] > 0:
# plt.scatter(point_center_plt[:, 0], point_center_plt[:, 2], s=200, c='white',
# alpha=0.5, marker='x', vmin=-1, vmax=1)
# if not split == 'test':
# plt.scatter(gt_boxes3d_cam[:, 0], gt_boxes3d_cam[:, 2], s=200, c='blue',
# alpha=0.5, marker='+', vmin=-1, vmax=1)
# plt.show()
# continue
if not split == 'test':
if gt_boxes3d_cam.shape[0]==0:
foreground_flag = torch.zeros(rpn_scores_norm.shape[0]).cuda()>0
foreground_flag_G = torch.zeros(rpn_scores_norm.shape[0]).cuda() > 0
else:
gt_boxes3d_cam = torch.from_numpy(gt_boxes3d_cam).cuda().view(-1, 7)
noise_gt_boxes3d_cam = torch.from_numpy(noise_gt_boxes3d_cam).cuda().view(-1, 7)
proposal_noise_gt_distance = distance_2(noise_gt_boxes3d_cam[:,[0,2]],rpn_pred_center[:,[0,2]])
proposal_gt_distance = distance_2(gt_boxes3d_cam[:,[0,2]],rpn_pred_center[:,[0,2]])
proposal_gt_index = torch.argmin(proposal_gt_distance, dim=-1)
if split=='train':
foreground_flag = (torch.min(proposal_gt_distance, dim=-1)[0] < 0.7) | \
(torch.min(proposal_noise_gt_distance, dim=-1)[0] < 0.7)
foreground_flag_G = (torch.min(proposal_gt_distance, dim=-1)[0] < 1.5) | \
(torch.min(proposal_noise_gt_distance, dim=-1)[0] < 1.5)
else:
foreground_flag = torch.min(proposal_gt_distance, dim=-1)[0] < 0.7
foreground_flag_G = torch.min(proposal_gt_distance, dim=-1)[0] < 1.5
recall_count += (torch.min(proposal_noise_gt_distance, dim=0)[0] <0.7).float().sum()
gt_count += proposal_noise_gt_distance.shape[1]
# background cancelation
# if BACKGROUND_CANCEL:
# cancel_mask = rpn_input_scores.view(-1)>BACK_THRESH
# inputs = inputs[cancel_mask]
# rpn_reg_dist = rpn_reg_dist[cancel_mask]
# rpn_input_scores = rpn_input_scores[cancel_mask]
# rpn_backbone_features = rpn_backbone_features[cancel_mask]
if COSINE_DISTANCE:
point_prop_cos_matrix = cos_matrix_distance(rpn_pred_center[:, [0, 2]],inputs[:,[0,2]],rpn_reg_dist[:,[0,2]])
# parsing to instance
point_proposal_distance = distance_2(rpn_pred_center[:, [0, 2]], inputs[:, [0, 2]])
for i in range(rpn_pred_center.shape[0]):
if COSINE_DISTANCE: # cosine
if BACKGROUND_ADDING:
point_instance_flag = (point_proposal_distance[:,i].view(-1)<4.0)&\
(point_prop_cos_matrix[:,i]>COS_THRESH) |\
(point_proposal_distance[:,i].view(-1)<0.7) |\
((rpn_input_scores.view(-1)<BACK_THRESH)&\
(point_proposal_distance[:,i].view(-1)<4.0))
else:
point_instance_flag = (point_proposal_distance[:,i].view(-1)<4.0)&\
(point_prop_cos_matrix[:,i]>COS_THRESH) |\
(point_proposal_distance[:,i].view(-1)<0.7)
else: #normal
point_instance_flag = (point_proposal_distance[:, i].view(-1) < 4.0)
if point_instance_flag.long().sum()==0:continue
cur_pts_rect =(inputs)[point_instance_flag,:3].detach().cpu().numpy()
cur_box_reflect = (inputs)[point_instance_flag, -1].detach().cpu().numpy()
cur_pts_mask = (rpn_input_scores)[point_instance_flag].detach().cpu().numpy()
cur_pts_feature = (rpn_backbone_features)[point_instance_flag].detach().cpu().numpy()
cur_pts_center = rpn_pred_center[i].detach().cpu().numpy()
cur_box_point = (cur_pts_rect[:,:3] - cur_pts_center[:3].reshape(1,3))
cur_prob_mask = cur_pts_mask.reshape(-1,1)
cur_pts_feature = cur_pts_feature.reshape(-1,cur_pts_feature.shape[-1])
cur_pts_center = cur_pts_center.reshape(3)
if split == 'test': continue
box_id = -1
fg_flag = False
gt_box = np.zeros(7)
gt_mask = np.zeros((cur_prob_mask.shape))
if foreground_flag[i]==True:
fg_flag = True
if foreground_flag_G[i] == True:
box_id = proposal_gt_index[i].detach().cpu().numpy()
gt_box = gt_boxes3d_cam[box_id].detach().cpu().numpy().reshape(7)
gt_box[0] = gt_box[0] - cur_pts_center[0]
gt_box[2] = gt_box[2] - cur_pts_center[2]
gt_box[3] = gt_box[3] * 1.2
gt_box[4] = gt_box[4] * 1.2
gt_box[5] = gt_box[5] * 1.2
gt_corners = kitti_utils.boxes3d_to_corners3d(gt_box.reshape(-1,7), rotate=True)
gt_mask = kitti_utils.in_hull(cur_box_point, gt_corners.reshape(-1,3)).reshape(-1,1)
gt_box = gt_boxes3d_cam[box_id].detach().cpu().numpy().reshape(7)
gt_box[0] = gt_box[0] - cur_pts_center[0]
gt_box[2] = gt_box[2] - cur_pts_center[2]
# fig, ax = plt.subplots(figsize=(5, 5))
# plt.title('%d / %d'%(box_id, gt_boxes3d_cam.shape[0]))
# ax.axis([-4, 4, -4, 4])
# plt.scatter(cur_box_point[:, 0], cur_box_point[:, 2], s=15, c=cur_prob_mask[:,0], edgecolor='none',
# cmap=plt.get_cmap('rainbow'), alpha=1, marker='.', vmin=0, vmax=1)
# plt.scatter(np.zeros(1), np.zeros(1), s=200, c='black',
# alpha=0.5, marker='x', vmin=-1, vmax=1)
# if foreground_flag[i] == True:
# plt.scatter(gt_box[0], gt_box[2], s=200, c='blue',
# alpha=0.5, marker='+', vmin=-1, vmax=1)
# gt_corners = kitti_utils.boxes3d_to_corners3d(gt_box.reshape(-1, 7), rotate=True)
# pred_boxes3d_corner = gt_corners
# print_box_corner = pred_boxes3d_corner[0]
# x1, x2, x3, x4 = print_box_corner[0:4, 0]
# z1, z2, z3, z4 = print_box_corner[0:4, 2]
# polygon = np.zeros([5, 2], dtype=np.float32)
# polygon[0, 0] = x1
# polygon[1, 0] = x2
# polygon[2, 0] = x3
# polygon[3, 0] = x4
# polygon[4, 0] = x1
# polygon[0, 1] = z1
# polygon[1, 1] = z2
# polygon[2, 1] = z3
# polygon[3, 1] = z4
# polygon[4, 1] = z1
# line1 = [(x1, z1), (x2, z2)]
# line2 = [(x2, z2), (x3, z3)]
# line3 = [(x3, z3), (x4, z4)]
# line4 = [(x4, z4), (x1, z1)]
# (line1_xs, line1_ys) = zip(*line1)
# (line2_xs, line2_ys) = zip(*line2)
# (line3_xs, line3_ys) = zip(*line3)
# (line4_xs, line4_ys) = zip(*line4)
# ax.add_line(Line2D(line1_xs, line1_ys, linewidth=1, color='green'))
# ax.add_line(Line2D(line2_xs, line2_ys, linewidth=1, color='red'))
# ax.add_line(Line2D(line3_xs, line3_ys, linewidth=1, color='red'))
# ax.add_line(Line2D(line4_xs, line4_ys, linewidth=1, color='red'))
# plt.show()
if (not split=='train') or (split=='train' and cur_box_point.shape[0]>5):
gt_database = {'instance_id': instance_id,
'sample_id': sample_id,
'box_id': int(box_id),
'center': cur_pts_center.reshape(1,3),
'foreground_flag': fg_flag,
'gt_boxes': gt_box.reshape(1,7),
'cur_box_point': cur_box_point,
'cur_box_reflect': cur_box_reflect.reshape(-1,1),
#'cur_pts_feature': cur_pts_feature,
'cur_prob_mask': cur_prob_mask,
'gt_mask': gt_mask,
}
ALL_database.append(gt_database)
instance_id += 1
fg_sum += foreground_flag[i].long().cpu().numpy()
Gfg_sum += foreground_flag_G[i].long().cpu().numpy()
bg_sum += (1 - foreground_flag[i].long()).cpu().numpy()
print('sample %s, instance %d, fg %d, bg %d, Gfg %d, recall %.4f' % (sample_id, instance_id, fg_sum, bg_sum, Gfg_sum, recall_count/max(gt_count,1)))
save_file_name = os.path.join(save_dir, '%s_boxes.pkl'%split)
print('Writing to file, please wait')
with open(save_file_name, 'wb') as f:
# dict_data = {
# 'sample_list': dataset.image_idx_list,
# 'ALL_database': ALL_database,
# }
pickle.dump(ALL_database, f)
print('Done')
print(cfg.RPN.SCORE_THRESH,PROP_DIST,BACKGROUND_ADDING,BACK_THRESH,COSINE_DISTANCE,COS_THRESH)