-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
38 lines (33 loc) · 1.5 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import os.path
import torch.utils.data as data
from PIL import Image
def make_dataset(root, type='GT'):
image_path = os.path.join(root, 'Imgs')
mask_path = os.path.join(root, type)
img_list = [os.path.splitext(f)[0] for f in os.listdir(image_path) if f.endswith('.jpg')]
img_list.sort()
return [(os.path.join(image_path, img_name + '.jpg'), os.path.join(mask_path, img_name + '.png')) for img_name in img_list]
class ImageFolder(data.Dataset):
# image and gt should be in the same folder and have same filename except extended name (jpg and png respectively)
def __init__(self, root, joint_transform=None, transform=None, target_transform=None, index=None, type='GT'):
self.root = root
self.imgs = make_dataset(root, type=type)
if index is not None:
self.imgs = [self.imgs[i] for i in index]
self.joint_transform = joint_transform
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
img_path, gt_path = self.imgs[index]
img = Image.open(img_path).convert('RGB')
target = Image.open(gt_path).convert('L')
if self.joint_transform is not None:
img, target = self.joint_transform(img, target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)