-
Notifications
You must be signed in to change notification settings - Fork 10
/
PanTompkins.c
940 lines (715 loc) · 30.7 KB
/
PanTompkins.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
/**********************************************************************************
PanTompkins.c
Author: Hooman Sedghamiz, Jan 2020
Last Updated: Feb 2021
-------------------------------------------
-------------------------------------------
Description:
This is an efficient and fixed-point implementation of the well-known Pan and
Tompkins beat detector [1]. This code implements an updated version of the
published article [2] where the authors published corrections to a few filters
employed in the paper. Below is a list of stages that the algorithm goes
through:
1. Preprocessing :
- In preprocessing stage, the signal is passed through 5 filters namely
low pass (~ <15 Hz), high pass (~ > 5Hz), 5 point derivative, squaring
and moving average window respectively.
- The implementation of these filters is very cruicial both in terms
of end results and computational load. Therefore, the following optimizations
are performed:
- No use of convolution: Filters are implemented based on their
difference equation making them recursive and minimizing the number
of operations.
- Additional care has been given to overflow control, while there is
no garantee that an oveflow would never happen but several gain control
checkpoints are implemented. Note that still the range and resolution
of ADC plays a crucial point in filter outputs.
- Almost no division nor multiplication is employed and all the operations
are performed with bit shifting, making the filters extremely efficient.
- Filters are implemented in both Direct I and Direct II form.
2. Signal analysis and peak detection:
- After signal enhancement, both integrated signal (output of moving average filter)
and band-passed signal (output of HP filter) are simultanously analyzed for
beat detection. One of the advantages of this code is the implementation of
search-back and T-wave discrimination without using any buffers as described
below:
- Search-back:
- Once no beat is detected for 166% of the RR mean estimate, a search
back needs to be initiated to find the potentially missed beat. In order
to avoid storing a buffer, the code only stores the tallest peak which
was previously classified as noise, once there is a need for search-back
the stored peak is compared against thresholds and therefore no buffer
is requried.
- T-wave discrimination:
- If a beat is close than 360msec to the previous detected beat, a slope
test to the previous beat is employed to check whether it is a T wave.
In order to avoid storing a buffer, the code saves the largest peak in
the differentiated signal every time a beat is detected. Once a new beat
is suspicious of being T wave, that stored slope is employed.
3. Decision making:
- The algorithms stores 2 seperate thresholds namely one for bandpassed signal and
one for the integrated. Each of these thresholds is adaptively updated based on
detecting noise and signal peaks. Once a peak is above threshold in integrated signal
and also the corresponding peak in BP signal is also above threshold that peak is
classified as a beat.
4. Usage:
- For example usage please see PanTompkinsCMD.c. For use simply include the header
and initialize the code (PT_init()). Then simply pass the aquired samples iteratively
to the main module PT_StateMachine(sample). See below for details.
References:
[1] Pan, Jiapu; Tompkins, Willis J. (March 1985). "A Real-Time QRS Detection
Algorithm". IEEE Transactions on Biomedical Engineering. BME-32 (3): 230�236.
[2] "A real time QRS detection algorithm (errata corrige), Link:
https://courses.cs.washington.edu/courses/cse474/18wi/labs/l8/QRSdetection.pdf
[3] Sedghamiz, Hooman. "Complete Pan Tompkins Implementation ECG QRS detector
- File Exchange - MATLAB Central" Link:
https://ww2.mathworks.cn/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector
**********************************************************************************/
/********************************************************************************
Headers
********************************************************************************/
#include "PanTompkins.h"
/********************************************************************************
PT Algorithm data and buffers, see PT_init for detailed use of each parameter.
********************************************************************************/
static struct PT_struct PT_data;
static struct PT_struct *const PT_dptr = &PT_data;
static int16_t Prev_valBP,
Prev_Prev_valBP, Best_PeakBP, Prev_valDR, Prev_Prev_valDR,
Best_PeakDR, Old_PeakDR, Count_SinceRR, RR1_p, RR2_p,
RR1_sum, RR2_sum, BlankTimeCnt, SBcntI, SB_peakBP, SB_peakDR,
y_h, st_mean_pkBP;
static uint16_t MV_sum, PEAKI_temp, st_mx_pk, st_mean_pk,
Prev_val, Prev_Prev_val, SB_peakI;
#if (FILTER_FORM == 2)
static int16_t LP_y_new, LP_y_old;
#endif
/**********************************************************************************
Fuction Name: PT_init
Parameter:
Input: none
Returns: none
Description: initializes the PanTompkins (PT) data structure and RR interval,
and filter Buffers.
*******************************************************************************/
void PT_init( void )
{
/**************************************************
Initialize Pan_Tompkins structure.
**************************************************/
memset(&PT_data, 0, sizeof(PT_data));
PT_dptr->PT_state = START_UP;
PT_dptr->Recent_RR_M = PT_dptr->RR_M = PT1000MS;
PT_dptr->RR_Low_L = RR92PERCENT;
PT_dptr->RR_High_L = RR116PERCENT;
PT_dptr->RR_Missed_L = RR166PERCENT;
PT_dptr->LP_pointer = 0;
PT_dptr->HP_pointer = 0;
PT_dptr->MVA_pointer = 0;
PT_dptr->HR_State = REGULAR_HR;
/**************************************************
Initialize filter buffers
**************************************************/
int8_t idex;
for (idex = 0; idex < LP_BUFFER_SIZE; idex++)
PT_dptr->LP_buf[idex] = 0; // LP filter buffer
for (idex = 0; idex < HP_BUFFER_SIZE; idex++)
PT_dptr->HP_buf[idex] = 0; // HP filter buffer
for (idex = 0; idex < DR_BUFFER_SIZE; idex++)
PT_dptr->DR_buf[idex] = 0; // DR filter buffer
for (idex = 0; idex < MVA_BUFFER_SIZE; idex++)
PT_dptr->MVA_buf[idex] = 0; // MVA filter buffer
for (idex = 0; idex < RR_BUFFER_SIZE; idex++) {
PT_dptr->RR_AVRG1_buf[idex] =
PT_dptr->RR_AVRG2_buf[idex] = PT1000MS; // Normal and extreme RR buffers
}
/**************************************************
Initialize all static variables
**************************************************/
Prev_val = Prev_Prev_val = 0; // Place holders for peak detector in Integrated Sig
Prev_valBP = Prev_Prev_valBP = Best_PeakBP = 0; // Place holders for peak detector in BP signal
Prev_valDR = Prev_Prev_valDR = Best_PeakDR = Old_PeakDR = 0; // Place holders for peak detector in Derivative signal (Used for T-wave discrimination)
Count_SinceRR = 0; // Nr of samples since last qrs peak
RR1_p = RR2_p = 0; // Pointers to RR average 1 and 2 resepectively
MV_sum = 0; // sum for moving average filter
RR1_sum = RR2_sum = PT1000MS << 3; // Sum of RR1 and RR2 buffers
BlankTimeCnt = 0; // Counter for blank-time.
SBcntI = 0; // For searchback index in Integ Signal
SB_peakI = 0; // For searchback in Integ sig
SB_peakBP = SB_peakDR = 0; // For searchback peak holders in BP and slope signal
st_mx_pk = 0; // Used in learning phase 1 to estimate thresholds
y_h = 0; // recusrively used in HP filter
#if (FILTER_FORM == 2)
LP_y_new = LP_y_old = 0; // Parameters for DirectForm || LP filter
#endif
}
/**********************************************************************************
Fuction Name: PT_StateMachine
Parameter:
Input : datum - Most recent sample of ECG from ADC.
Returns: BeatDelay - If non-zero a qrs has been detected with BeatDelay samples.
Description: Pan-Tompkins State Machine implementation. This state-machine goes through
each step of the Pan-Tompkins algorithm, namely, BP filtering, derivative filtering,
squaring and integration. After signal enhancement, BP and integrated signal's peaks
are analyzed and compared to two adaptive thresholds to determine whether a beat has occured.
The thresholds themselves is computed adaptively from noise and signal estimation. An efficient
search-back strategy and T-wave discrimination is also implemented that do not require any
buffers. Once a beat is detected, the function returns a non-zero delay indicating the QRS
peak delay to the current sample.
**********************************************************************************/
int16_t PT_StateMachine(int16_t datum)
{
int16_t BeatDelay = 0;
uint16_t PEAKI ;
// ------- Preprocessing filtering and Peak detection --------- //
LPFilter(&datum); // LowPass filtering
HPFilter(); // HighPass filtering
PeakDtcBP(PT_dptr->HPF_val); // Store BP signal highest peak
DerivFilter();
PeakDtcDR(PT_dptr->DRF_val); // Store the highest slope for T wave discrimination
SQRFilter(); //Squaring
MVAFilter();
PEAKI = PeakDtcI();
// ---- Integrated Peak detection checks and blankTime ---- //
if (!PEAKI && BlankTimeCnt) // No beat, decrement BlankTime
{
if (--BlankTimeCnt == 0) // If blanktime over place the oldest peak
PEAKI = PEAKI_temp;
}
else if (PEAKI && !BlankTimeCnt) // If no peak for peak for last 200msec, save the current peak
{
BlankTimeCnt = PT200MS;
PEAKI_temp = PEAKI;
PEAKI = 0;
}
else if(PEAKI) // If a bigger peak comes along, store it
{
if (PEAKI > PEAKI_temp)
{
BlankTimeCnt = PT200MS;
PEAKI_temp = PEAKI;
PEAKI = 0;
}
else if (--BlankTimeCnt == 0)
PEAKI = PEAKI_temp;
else
PEAKI = 0;
}
// -- Run Different Phases of the Algo -> Learning Ph1, 2 and decision --//
++Count_SinceRR;
if (PT_dptr->PT_state == START_UP || PT_dptr->PT_state == LEARN_PH_1)
{
if (PEAKI > 0)
LearningPhase1(&PEAKI, &Best_PeakBP);
}
// ---- Once learning Phase 1 done, start storing beats ---- //
else
{
// ---- Is the peak taller than ThI1 and ThF1? ---- //
if (PEAKI > PT_dptr->ThI1 && Best_PeakBP > PT_dptr->ThF1)
{
// ---- Initiated phase 2 ---- //
if (PT_dptr->PT_state == LEARN_PH_2)
{
// ----- Update Integ & BP Th ------ //
UpdateThI(&PEAKI, 0);
UpdateThF(&Best_PeakBP, 0);
// --- First RR interval --- //
BeatDelay = GENERAL_DELAY + PT200MS;
Count_SinceRR = 0;
Old_PeakDR = Best_PeakDR;
Best_PeakDR = 0;
Best_PeakBP = 0;
// --- Now we can compute RR intervals --- //
PT_dptr->PT_state = DETECTING;
}
// ------ Learning phases are done! -------- //
else
{
// --- T-Wave Test if RR < 360msec, is current slope lower 0.5prev_slope then noise --- //
if (Count_SinceRR < PT360MS && (Best_PeakDR < (Old_PeakDR >> 2)))
{
// ----- Update Integ & BP Th ------ //
UpdateThI(&PEAKI, 1);
UpdateThF(&Best_PeakBP, 1);
}
else
{
// ----- Update Integ & BP Th && RR buffers ------ //
UpdateThI(&PEAKI, 0);
UpdateThF(&Best_PeakBP, 0);
UpdateRR(Count_SinceRR);
// --- Reset parameters --- //
BeatDelay = GENERAL_DELAY + PT200MS;
Count_SinceRR = 0;
Old_PeakDR = Best_PeakDR; // Store the derivative for T-wave test
Best_PeakDR = Best_PeakBP = 0;
SBcntI = 0;
SB_peakBP = 0;
SB_peakDR = 0;
SB_peakI = 0;
}
}
}
// ------ If the peak is noise ------- //
else if (PEAKI > 0)
{
// ----- Update Integ & BP Th ------ //
UpdateThI(&PEAKI, 1);
UpdateThF(&Best_PeakBP, 1);
// ----- Store the peak for searchback ------ //
if (PEAKI > SB_peakI && Count_SinceRR >= PT360MS)
{
SB_peakI = PEAKI; // Store Integ Sig peak
SB_peakBP = Best_PeakBP; // Store BP Sig peak
SB_peakDR = Best_PeakDR; // Derivative of SB point
SBcntI = Count_SinceRR; // Store Indice
}
}
}
// -- Do search-back if we have no beats in PT_dptr->RR_Missed_L -- //
if (Count_SinceRR > PT_dptr->RR_Missed_L && SB_peakI > PT_dptr->ThI2 && PT_dptr->PT_state == DETECTING)
{
// ---- Checking the BP signal ---- //
if (SB_peakBP > PT_dptr->ThF2)
{
// ----- Update Integ & BP Th && RR buffers ------ //
UpdateThI(&SB_peakI, 0);
UpdateThF(&SB_peakBP, 0);
UpdateRR(SBcntI);
// --- Reset parameters --- //
BeatDelay = Count_SinceRR = Count_SinceRR - SBcntI;
BeatDelay += (GENERAL_DELAY + PT200MS);
Old_PeakDR = SB_peakDR; // Store the derivative for T-wave test
Best_PeakDR = Best_PeakBP = 0;
SBcntI = 0;
SB_peakBP = 0;
SB_peakDR = 0;
SB_peakI = 0;
}
}
// ---- Emergency and Faulty Condition Reset ---- //
// If algorithm doest not find a beat in 4sec, then it resets itself
// and starts learning phases.
if (Count_SinceRR > PT4000MS) {
PT_init();
}
return (BeatDelay);
}
/**********************************************************************************
Fuction Name: LearningPhase1
Parameter:
Input : pkI - Pointer to the integrated signal peak
pkBP- Pointer BP signal peak
Returns: none - Updates the static values (st_mx_pk, st_mean_pk) and (st_mean_pkBP).
Description: Computes the maximum peak in the past 2 seconds and also the mean of the
peaks iteratively in both Integrated Signal and BP signal.
**********************************************************************************/
void LearningPhase1(uint16_t *pkI, int16_t *pkBP)
{
//---- Recursively compute the average and max of peaks ------ //
if (*pkI > st_mx_pk) st_mx_pk = *pkI;
// ---- If the very first time calling this function --- //
if (PT_dptr->PT_state == START_UP) {
PT_dptr->PT_state = LEARN_PH_1;
st_mean_pk = *pkI;
st_mean_pkBP = *pkBP;
}
// ----- Continue averaging once still in learning ----- //
else if(Count_SinceRR < PT2000MS){
st_mean_pk = (st_mean_pk + *pkI) >> 1;
st_mean_pkBP = (st_mean_pkBP + *pkBP) >> 1;
}
else {
PT_dptr->PT_state = LEARN_PH_2;
// ---- Integrated Signal Thresholds ------- //
PT_dptr->SPKI = (st_mx_pk >> 1);
PT_dptr->NPKI = (st_mean_pk >> 3);
PT_dptr->ThI1 = PT_dptr->NPKI + ((PT_dptr->SPKI - PT_dptr->NPKI) >> 2);
PT_dptr->ThI2 = PT_dptr->ThI1 >> 1;
// -------- BP Signal Thresholds ---------- //
PT_dptr->SPKF = (Best_PeakBP >> 1);
PT_dptr->NPKF = (st_mean_pkBP >> 3);
PT_dptr->ThF1 = PT_dptr->NPKF + ((PT_dptr->SPKF - PT_dptr->NPKF) >> 2);
PT_dptr->ThF2 = PT_dptr->ThF1 >> 1;
}
}
/**********************************************************************************
Fuction Name: LPFilter
Parameter:
Input : none - Pointer to the input datum.
Returns: none - Updates the static value PT_dptr->LPF_val in place.
Description: Low-pass filters the signal based on Pan-Tompkins Eq. 3,
y[n] = 2*y[n-1] - y[n-2] + x[n] - 2 * x[n - 6] + x[n - 12] . This
function implements the filter both in Direct Form I and II. Select the
type employed by setting FILTER_FORM to 1 or 2. Delay of the filter is 5.
**********************************************************************************/
void LPFilter(int16_t *val)
{
// -- To avoid using modulo employ half-pointer -- //
int16_t half_pointer, w;
half_pointer = PT_dptr->LP_pointer - (LP_BUFFER_SIZE >> 1);
if (half_pointer < 0)
half_pointer += LP_BUFFER_SIZE;
// ------- Filter based on selected Form ------- //
#if (FILTER_FORM == 1)
w = *val + (PT_dptr->LP_buf[1] << 1) - PT_dptr->LP_buf[0];
*val = w - (PT_dptr->LP_buf[half_pointer] << 1) + PT_dptr->LP_buf[PT_dptr->LP_pointer];
PT_dptr->LP_buf[PT_dptr->LP_pointer] = w;
#else
w = (LP_y_old << 1) - LP_y_new + *val - (PT_dptr->LP_buf[half_pointer] << 1) + PT_dptr->LP_buf[PT_dptr->LP_pointer];
LP_y_new = LP_y_old;
LP_y_old = w;
PT_dptr->LP_buf[PT_dptr->LP_pointer] = *val;
#endif
// --- Avoid signal overflow by gaining down ---- //
if (w >= 0)
PT_dptr->LPF_val = w >> 5;
else
PT_dptr->LPF_val = (w >> 5) | 0xF800;
if (++PT_dptr->LP_pointer == LP_BUFFER_SIZE)
PT_dptr->LP_pointer = 0;
}
/**********************************************************************************
Fuction Name: HPFilter
Parameter:
Input : none - Employs Current_Sample in place.
Returns: none - Updates the static value PT_dptr->HPF_val in place.
Description: High-pass filters the signal based on Pan-Tompkins Eq. 2.4 (Errata),
y[n] = y[n-1] + x[n-32]/32 - x[n]/32 + x[n - 16] - x[n - 17] . This
function implements the filter both in Direct Form I and II. Select the
type employed by setting FILTER_FORM to 1 or 2. Delay 16 samples.
**********************************************************************************/
void HPFilter(void)
{
// -- To avoid using modulo employ half-pointer -- //
int16_t half_pointer, h_prev_pointer;
half_pointer = PT_dptr->HP_pointer - (HP_BUFFER_SIZE >> 1);
if (half_pointer < 0)
half_pointer += HP_BUFFER_SIZE;
if (!half_pointer)
h_prev_pointer = HP_BUFFER_SIZE - 1;
else
h_prev_pointer = half_pointer - 1;
// ------- Filter based on selected Form ------- //
#if (FILTER_FORM == 1)
y_h = PT_dptr->LPF_val + PT_dptr->HP_buf[0];
PT_dptr->LPF_val = ((PT_dptr->HP_buf[PT_dptr->HP_pointer] - y_h) >> 5) + PT_dptr->HP_buf[half_pointer] - PT_dptr->HP_buf[h_prev_pointer];
PT_dptr->HP_buf[PT_dptr->HP_pointer] = y_h;
#else
y_h += (PT_dptr->HP_buf[PT_dptr->HP_pointer] >> 5) - (PT_dptr->LPF_val >> 5) + PT_dptr->HP_buf[half_pointer] - PT_dptr->HP_buf[h_prev_pointer];
PT_dptr->HP_buf[PT_dptr->HP_pointer] = PT_dptr->LPF_val;
#endif
// ------- Again slightly gaining down --------- //
if (y_h >= 0)
PT_dptr->HPF_val = (y_h >> 1);
else
PT_dptr->HPF_val = (y_h >> 1) | 0xF800;
if (++PT_dptr->HP_pointer == HP_BUFFER_SIZE) PT_dptr->HP_pointer = 0;
}
/**********************************************************************************
Fuction Name: DerivFilter
Parameter:
Input : none - Employs Current_Sample.
Returns : none - Updates the value Current_Sample in place.
Description: Computes the signal derivative based on Pan-Tompkins Eq. 2.6 (Errata),
y[n] = 1/8(2x[n] + x[n - 1] - x[n - 3] - 2x[n - 4]) . Delay 2 samples.
**********************************************************************************/
void DerivFilter(void)
{
// --- Since it is only a 5 point derivative filter we avoid using pointers and half pointers for further efficieny ---- //
int16_t w;
w = PT_dptr->DR_buf[0] - PT_dptr->DR_buf[2];
w += ((PT_dptr->HPF_val - PT_dptr->DR_buf[3]) << 1);
w >>= 3;
PT_dptr->DR_buf[3] = PT_dptr->DR_buf[2];
PT_dptr->DR_buf[2] = PT_dptr->DR_buf[1];
PT_dptr->DR_buf[1] = PT_dptr->DR_buf[0];
PT_dptr->DR_buf[0] = PT_dptr->HPF_val;
PT_dptr->DRF_val = w;
}
/**********************************************************************************
Fuction Name: SQRFilter
Parameter:
Input : none - Employs Current_Sample.
Returns : none - Updates the value Current_Sample in place.
Description: Squares the signal based on Pan-Tompkins Eq. 10,
y[n] = x[n]^2. No delay.
**********************************************************************************/
void SQRFilter(void)
{
// ------------ Avoiding Overflow -------------- //
uint16_t temp;
if (PT_dptr->DRF_val > SQR_LIM_VAL || PT_dptr->DRF_val < (-SQR_LIM_VAL))
PT_dptr->SQF_val = UINT16_MAX;
else
{
if (PT_dptr->DRF_val < 0)
temp = (uint16_t)(-PT_dptr->DRF_val);
else
temp = (uint16_t)(PT_dptr->DRF_val);
PT_dptr->SQF_val = temp*temp;
}
if (PT_dptr->SQF_val > SQR_LIM_OUT)
PT_dptr->SQF_val = SQR_LIM_OUT;
}
/**********************************************************************************
Fuction Name: MVAFilter
Parameter:
Input : none - Employs Current_Sample.
Returns : none - Updates the value Current_Sample in place.
Description: Computes the rolling moving average of the input signal
based on Eq. 11 of Pan-Tompkins, y[n] = (1/N)[sum(x[1]+...+x[N])]. Delay 15 Samples.
**********************************************************************************/
void MVAFilter(void)
{
//---- The MV_sum can easily overflow so we limit the bound by uint16 precision ------ //
if (MV_sum < (UINT16_MAX - PT_dptr->SQF_val))
MV_sum += PT_dptr->SQF_val;
else
MV_sum = UINT16_MAX;
if (MV_sum > PT_dptr->MVA_buf[PT_dptr->MVA_pointer])
MV_sum -= PT_dptr->MVA_buf[PT_dptr->MVA_pointer];
else
MV_sum = 0;
PT_dptr->MVA_buf[PT_dptr->MVA_pointer] = PT_dptr->SQF_val;
PT_dptr->MVA_val = MV_sum/(uint16_t) MVA_BUFFER_SIZE;
if (PT_dptr->MVA_val > MVA_LIM_VAL)
PT_dptr->MVA_val = MVA_LIM_VAL;
if (++PT_dptr->MVA_pointer == MVA_BUFFER_SIZE)
PT_dptr->MVA_pointer = 0;
}
/**********************************************************************************
Fuction Name: PeakDtcI
Parameter:
Input : none - Employs Current_Sample.
Returns : p - The local maxima in intergrated signal.
Description: This is a simple peak detector for fiducial point detection in the integrated signal.
If the signal changes sign the value of the peak is asssumed ot be a peak.
if x[n-1] <= x[n] > x[n+1], then x[n] is a peak.
**********************************************************************************/
uint16_t PeakDtcI(void)
{
uint16_t p;
// ---------- Local maxima or not --------- //
if (PT_dptr->MVA_val <= Prev_val && Prev_val > Prev_Prev_val) {
p = Prev_val;
}
else {
p = 0;
}
Prev_Prev_val = Prev_val;
Prev_val = PT_dptr->MVA_val;
return (p);
}
/**********************************************************************************
Fuction Name: PeakDtcDR
Parameter:
Input : none - Input from derivative filter
Returns : p - Stores the beat in Best_PeakDR for T-wave dsicrimation.
Description: This is a simple peak detector for fiducial point detection in Derivative Signal,
the strategy is to store the highest slope in the signal preceding the qrs so that if the next qrs is
suspicious to be a real beat could be compared against this. This helps us not to need to store a buffer.
For T-wave discrimination see T-wave identification of the paper.
if x[n-1] <= x[n] > x[n+1], then x[n] is a peak.
**********************************************************************************/
void PeakDtcDR(int16_t DR_sample)
{
if (DR_sample < 0) DR_sample = -DR_sample;
// ---------- Local maxima or not --------- //
if (DR_sample <= Prev_valDR && Prev_valDR > Prev_Prev_valDR) {
//-- For T-wave discrimination store the highest slope -- //
if (Prev_valDR > Best_PeakDR) Best_PeakDR = Prev_valDR;
}
Prev_Prev_valDR = Prev_valDR;
Prev_valDR = DR_sample;
}
/**********************************************************************************
Fuction Name: PeakDtcBP
Parameter:
Input : none - Input from BP signal.
Returns : none - Returns a local maxima in Best_PeakBP.
Description: This is a simple peak detector for fiducial point detection in BP Signal.
Once a peak is detected in Integrated signal, the maximum peak in BP signal is also compared
against adaptive thresholds.
if x[n-1] <= x[n] > x[n+1], then x[n] is a peak.
**********************************************************************************/
void PeakDtcBP(int16_t DR_sample)
{
if (DR_sample < 0) DR_sample = -DR_sample;
// ---------- Local maxima or not --------- //
if (DR_sample <= Prev_valBP && Prev_valBP > Prev_Prev_valBP) {
//-- For T-wave discrimination store the highest slope -- //
if (Prev_valBP > Best_PeakBP) Best_PeakBP = Prev_valBP;
}
Prev_Prev_valBP = Prev_valBP;
Prev_valBP = DR_sample;
}
/**********************************************************************************
Fuction Name: UpdateRR
Parameter:
Input : qrs - The most recent RR interval.
Returns : none - Updates the normal and selected RR values and updates the buffers.
Description: The most recent RR interval is passed to the function, if the RR interval is within
the normal range, RR_LOW_LIM, RR_HIGH_LIM, RR_MISSED_LIM, RR_AVRG2_buf is updated, otherwise
RR_AVRG1_buf is updated which is the average of the most recents beats. Note that two buffers
are employed for robust mean computation (Eq. 24-28). If the peak is irregular the thresholds
are reduced by 50%.
RR_Low_Lim = 0.92*RR_M = ((92/100) * RR_M) = RR_M - (2/25)*RR_M
RR_High_Lim = 1.16*RR_M = ((116/100) * RR_M) = RR_M + (4/25)*RR_M
RR_Missed_Lim = 1.66*RR_M = ((166/100) * RR_M) = RR_M + (33/50)*RR_M
**********************************************************************************/
void UpdateRR(int16_t qrs)
{
// ---------- Update most 8 Recent RR mean Interval------------- //
RR1_sum += qrs;
RR1_sum -= PT_dptr->RR_AVRG1_buf[RR1_p];
PT_dptr->RR_AVRG1_buf[RR1_p] = qrs;
PT_dptr->Recent_RR_M = RR1_sum/RR_BUFFER_SIZE;
if (++RR1_p == RR_BUFFER_SIZE)
RR1_p = 0;
// ------ Update Selected Beat RR mean if qrs in range --------- //
if (qrs >= PT_dptr->RR_Low_L && qrs <= PT_dptr->RR_High_L) {
// ------ Update selective RR mean ----- //
RR2_sum += qrs;
RR2_sum -= PT_dptr->RR_AVRG2_buf[RR2_p];
PT_dptr->RR_AVRG2_buf[RR2_p] = qrs;
PT_dptr->RR_M = RR2_sum / RR_BUFFER_SIZE;
if (++RR2_p == RR_BUFFER_SIZE)
RR2_p = 0;
// --------- Update Limits ------------ //
PT_dptr->RR_Low_L = PT_dptr->Recent_RR_M - (PT_dptr->Recent_RR_M << 1) / 25;
PT_dptr->RR_High_L = PT_dptr->Recent_RR_M + (PT_dptr->Recent_RR_M << 2) / 25;
PT_dptr->RR_Missed_L = PT_dptr->RR_M + (PT_dptr->RR_M * 33) / 50;
PT_dptr->HR_State = REGULAR_HR;
}
// -------- Irregular heart-rate ---------- //
else {
PT_dptr->RR_Missed_L = PT_dptr->Recent_RR_M + (PT_dptr->Recent_RR_M * 33) / 50;
PT_dptr->ThI1 >>= 1;
PT_dptr->ThF1 >>= 1;
PT_dptr->HR_State = IRREGULAR_HR;
}
}
/**********************************************************************************
Fuction Name: UpdateThI
Parameter:
Input : PEAKI - Pointer to the overal peak
NOISE_F - flag that indicates whether the peak is noise or not.
Returns : none - Recieves PEAKI and updates Signal peak estimate (SPKI), Noise peak
peak estimate (NPKI)
Description: This function recursively updates the adaptive noise and signal thresholds in
the Integrated signal. Implements Eq 12-16.
**********************************************************************************/
void UpdateThI( uint16_t *PEAKI, int8_t NOISE_F)
{
// ------ Update Noise & Signal Estimate ------ //
if (NOISE_F) {
PT_dptr->NPKI -= PT_dptr->NPKI >> 3;
PT_dptr->NPKI += *PEAKI >> 3;
}
else {
PT_dptr->SPKI -= PT_dptr->SPKI >> 3;
PT_dptr->SPKI += *PEAKI >> 3;
}
// --------- Update Thresholds ---------------- //
PT_dptr->ThI1 = PT_dptr->NPKI + ((PT_dptr->SPKI - PT_dptr->NPKI) >> 2);
PT_dptr->ThI2 = PT_dptr->ThI1 >> 1;
}
/**********************************************************************************
Fuction Name: UpdateThF
Parameter:
Input : PEAKF - Pointer to the overal peak
NOISE_F - Flag that indicates whether the peak is noise or not.
Returns : none - Recieves PEAKF and updates Signal peak estimate in BP signal(SPKF), Noise peak
peak estimate (NPKF)
Description: This function recursively updates the adaptive noise and signal thresholds in
the BP signal. Implements Eq 17-21.
**********************************************************************************/
void UpdateThF(int16_t *PEAKF, int8_t NOISE_F)
{
// ------ Update Noise & Signal Estimate ------ //
if (NOISE_F) {
PT_dptr->NPKF -= PT_dptr->NPKF >> 3;
PT_dptr->NPKF += *PEAKF >> 3;
}
else {
PT_dptr->SPKF -= PT_dptr->SPKF >> 3;
PT_dptr->SPKF += *PEAKF >> 3;
}
// --------- Update Thresholds ---------------- //
PT_dptr->ThF1 = PT_dptr->NPKF + ((PT_dptr->SPKF - PT_dptr->NPKF) >> 2);
PT_dptr->ThF2 = PT_dptr->ThF1 >> 1;
}
/**************************************************
Helper functions for debugging and easy management.
One could use this to debug the algorithm in real-time or
query any parameter in the algorithm such as outputs of
the filters, thresholds, running heart-rate and etc.
***************************************************/
// ------Returns the state machine's state- SEE header for understanding underlying states ------ //
int16_t PT_get_State_output(void) {
return (PT_dptr->PT_state);
}
// ------Returns LP filter value ------ //
int16_t PT_get_LPFilter_output(void) {
return (PT_dptr->LPF_val);
}
// ------Returns HP filter value ------ //
int16_t PT_get_HPFilter_output(void) {
return (PT_dptr->HPF_val);
}
// ------Returns Dr filter value ------ //
int16_t PT_get_DRFilter_output(void) {
return (PT_dptr->DRF_val);
}
// ------Returns MVA filter value ------ //
uint16_t PT_get_MVFilter_output(void) {
return (PT_dptr->MVA_val);
}
// ------Returns SQR filter value ------ //
uint16_t PT_get_SQRFilter_output(void) {
return (PT_dptr->SQF_val);
}
/************************************
Returns instantanous heart rate per minute.
Input - Fs : Sampling Frequency of the signal
*************************************/
int16_t PT_get_ShortTimeHR_output(int16_t Fs) {
return (60 / (PT_dptr->Recent_RR_M / Fs));
}
/************************************
Returns robust heart rate per minute
Input - Fs : Sampling Frequency of the signal
*************************************/
int16_t PT_get_LongTimeHR_output(int16_t Fs) {
return (60 / (PT_dptr->RR_M / Fs));
}
// ------Returns the main threshold integrated signal Th value ------ //
uint16_t PT_get_ThI1_output(void) {
return (PT_dptr->ThI1);
}
// ------Returns the main threshold BP signal Th value ------ //
int16_t PT_get_ThF1_output(void) {
return (PT_dptr->ThF1);
}
// ------Returns Signal Level Estimate in Integrated Signal ----- //
uint16_t PT_get_SKPI_output(void) {
return (PT_dptr->SPKI);
}
// ------Returns Noise Level Estimate in Integrated Signal ------ //
uint16_t PT_get_NPKI_output(void) {
return (PT_dptr->NPKI);
}
// ------Returns Signal Level Estimate in BP Signal ------ //
int16_t PT_get_SPKF_output(void) {
return (PT_dptr->SPKF);
}
// ------Returns Noise Level Estimate in BP Signal ------ //
int16_t PT_get_NPKF_output(void) {
return (PT_dptr->NPKF);
}
// ------Returns HR state -> Regular:0, Irregular:1 ------ //
int16_t PT_get_HRState_output(void) {
return (PT_dptr->HR_State);
}