Model | Paper |
---|---|
DeepFM | [arXiv 2017] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction |
ESMM | [SIGIR 2018] Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate |
MMOE | [KDD 2018] Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts |
FiBiNET | [RecSys 2019] FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction |
TwoTower | [arXiv 2020] Embedding-based Retrieval in Facebook Search |
--config 训练配置,可根据业务新增
--data 数据样本
--src
--input_fn 输入相关函数
--models_ompl 模型实现
--common_utils 通用工具函数,包含特殊层,特殊loss的实现
--examples 运行样例
--online_deploy 部署脚本
--test 测试脚本
--common_utils
layers 特殊层实现(SENet, 双线性交叉层, attention层等)
loss_fn 损失函数
wpai_model_auto_update 更新在线预测的模型
--layers
dice
prelu
build_deep_layers
build_Bilinear_Interaction_layers
build_SENET_layers
attention_layer
batch_norm_layer
注意:数据和特征需要自己定义和添加到代码中
cd examples
python train_esmm.py
* mmoe 实现了base和wide+esmm版本
使用方法:
在初始化estimaor时,指定model_fn即可