-
Notifications
You must be signed in to change notification settings - Fork 8
/
plotter.py
executable file
·158 lines (134 loc) · 4.29 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
import sys
import os
import csv
import time
import subprocess
from optparse import OptionParser
from plot_output import NuPICPlotOutput
WINDOW = 200
HIGHLIGHT_ALPHA = 0.3
ANOMALY_HIGHLIGHT_COLOR = 'red'
DEFAULT_ANOMALY_THRESHOLD = 0.9
DEFAULT_ANOMALY_TRIGGER_COUNT = 1
parser = OptionParser(
usage="%prog <path/to/nupic/output/directory> [options]\n\nPlot nupic "
"output, optionally syncing the output to the playing of the original WAV file."
)
parser.add_option(
"-w",
"--wav",
dest="wav",
default=None,
help="Path to a WAV file to play synced to the plot.")
parser.add_option(
"-m",
"--maximize",
action="store_true",
default=False,
dest="maximize",
help="Maximize plot window."
)
parser.add_option(
"-t",
"--anomaly_threshold",
dest="anomaly_threshold",
default=DEFAULT_ANOMALY_THRESHOLD,
help="Value the anomaly likelihood(s) must breach before being marked as "
"anomalous in the chart."
)
parser.add_option(
"-g",
"--anomaly_trigger",
dest="anomaly_trigger",
default=DEFAULT_ANOMALY_TRIGGER_COUNT,
help="How many bins must be above the anomaly threshold to display an "
"anomaly on the chart."
)
parser.add_option(
"-a",
"--use_anomaly_score",
action="store_true",
default=False,
dest="use_anomaly_score",
help="Use the anomalyScore from NuPIC instead of the anomalyLikelihood."
)
def run(input_dir, audio_file, maximize,
anomaly_threshold, anomaly_trigger_count, use_anomaly_score):
file_names = os.listdir(input_dir)
bins = [os.path.splitext(n)[0] for n in file_names]
input_files = [open(os.path.join(input_dir, f)) for f in file_names]
readers = [csv.reader(f) for f in input_files]
headers = [reader.next() for reader in readers]
for reader in readers:
reader.next()
reader.next()
output = NuPICPlotOutput(input_dir, bins, maximize, anomaly_threshold, anomaly_trigger_count)
if audio_file:
subprocess.call("open %s" % audio_file, shell=True)
time.sleep(1.0)
start = time.time()
while True:
try:
next_lines = [reader.next() for reader in readers]
except StopIteration:
break
seconds = float(next_lines[0][headers[0].index("seconds")])
data_time = start + seconds
bin_values = []
anomaly_likelihoods = []
if time.time() <= data_time:
for i, line in enumerate(next_lines):
freq_bin = bins[i]
header = headers[i]
bin_value = float(line[header.index(freq_bin)])
if use_anomaly_score:
anomaly_key = "anomalyScore"
else:
anomaly_key = "anomalyLikelihood"
anomaly_likelihood = float(line[header.index(anomaly_key)])
bin_values.append(bin_value)
anomaly_likelihoods.append(anomaly_likelihood)
output.write(seconds, bin_values, anomaly_likelihoods)
# If syncing to an audio file, wait for it to catch up.
if audio_file:
while time.time() < data_time:
time.sleep(0.1)
output.close()
for f in input_files:
f.close()
if __name__ == "__main__":
(options, args) = parser.parse_args(sys.argv[1:])
try:
input_dir = args.pop(0)
except IndexError:
parser.print_help(sys.stderr)
audio_file = options.wav
run(
input_dir,
audio_file,
options.maximize,
float(options.anomaly_threshold),
int(options.anomaly_trigger),
options.use_anomaly_score
)