forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathradix2_fft.py
176 lines (148 loc) · 6 KB
/
radix2_fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
"""
import mpmath # for roots of unity
import numpy as np
class FFT:
"""
Fast Polynomial Multiplication using radix-2 fast Fourier Transform.
Reference:
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#The_radix-2_DIT_case
For polynomials of degree m and n the algorithms has complexity
O(n*logn + m*logm)
The main part of the algorithm is split in two parts:
1) __DFT: We compute the discrete fourier transform (DFT) of A and B using a
bottom-up dynamic approach -
2) __multiply: Once we obtain the DFT of A*B, we can similarly
invert it to obtain A*B
The class FFT takes two polynomials A and B with complex coefficients as arguments;
The two polynomials should be represented as a sequence of coefficients starting
from the free term. Thus, for instance x + 2*x^3 could be represented as
[0,1,0,2] or (0,1,0,2). The constructor adds some zeros at the end so that the
polynomials have the same length which is a power of 2 at least the length of
their product.
Example:
Create two polynomials as sequences
>>> A = [0, 1, 0, 2] # x+2x^3
>>> B = (2, 3, 4, 0) # 2+3x+4x^2
Create an FFT object with them
>>> x = FFT(A, B)
Print product
>>> x.product # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
[(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]
__str__ test
>>> print(x)
A = 0*x^0 + 1*x^1 + 2*x^0 + 3*x^2
B = 0*x^2 + 1*x^3 + 2*x^4
A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j)
"""
def __init__(self, poly_a=None, poly_b=None):
# Input as list
self.polyA = list(poly_a or [0])[:]
self.polyB = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
self.len_A = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
self.len_B = len(self.polyB)
# Add 0 to make lengths equal a power of 2
self.c_max_length = int(
2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
)
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
self.root = complex(mpmath.root(x=1, n=self.c_max_length, k=1))
# The product
self.product = self.__multiply()
# Discrete fourier transform of A and B
def __dft(self, which):
dft = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
# Corner case
if len(dft) <= 1:
return dft[0]
next_ncol = self.c_max_length // 2
while next_ncol > 0:
new_dft = [[] for i in range(next_ncol)]
root = self.root**next_ncol
# First half of next step
current_root = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
current_root = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
dft = new_dft
next_ncol = next_ncol // 2
return dft[0]
# multiply the DFTs of A and B and find A*B
def __multiply(self):
dft_a = self.__dft("A")
dft_b = self.__dft("B")
inverce_c = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
next_ncol = 2
while next_ncol <= self.c_max_length:
new_inverse_c = [[] for i in range(next_ncol)]
root = self.root ** (next_ncol // 2)
current_root = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2
)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root)
)
current_root *= root
# Update
inverce_c = new_inverse_c
next_ncol *= 2
# Unpack
inverce_c = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
# Overwrite __str__ for print(); Shows A, B and A*B
def __str__(self):
a = "A = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])
)
b = "B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])
)
c = "A*B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.product)
)
return f"{a}\n{b}\n{c}"
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()