forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsol1.py
55 lines (45 loc) · 1.67 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
Problem 39: https://projecteuler.net/problem=39
If p is the perimeter of a right angle triangle with integral length sides,
{a,b,c}, there are exactly three solutions for p = 120.
{20,48,52}, {24,45,51}, {30,40,50}
For which value of p ≤ 1000, is the number of solutions maximised?
"""
from __future__ import annotations
import typing
from collections import Counter
def pythagorean_triple(max_perimeter: int) -> typing.Counter[int]:
"""
Returns a dictionary with keys as the perimeter of a right angled triangle
and value as the number of corresponding triplets.
>>> pythagorean_triple(15)
Counter({12: 1})
>>> pythagorean_triple(40)
Counter({12: 1, 30: 1, 24: 1, 40: 1, 36: 1})
>>> pythagorean_triple(50)
Counter({12: 1, 30: 1, 24: 1, 40: 1, 36: 1, 48: 1})
"""
triplets: typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1):
for perpendicular in range(base, max_perimeter + 1):
hypotenuse = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(hypotenuse):
perimeter = int(base + perpendicular + hypotenuse)
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def solution(n: int = 1000) -> int:
"""
Returns perimeter with maximum solutions.
>>> solution(100)
90
>>> solution(200)
180
>>> solution(1000)
840
"""
triplets = pythagorean_triple(n)
return triplets.most_common(1)[0][0]
if __name__ == "__main__":
print(f"Perimeter {solution()} has maximum solutions")