forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsol1.py
153 lines (123 loc) · 4.08 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Project Euler problem 145: https://projecteuler.net/problem=145
Author: Vineet Rao, Maxim Smolskiy
Problem statement:
Some positive integers n have the property that the sum [ n + reverse(n) ]
consists entirely of odd (decimal) digits.
For instance, 36 + 63 = 99 and 409 + 904 = 1313.
We will call such numbers reversible; so 36, 63, 409, and 904 are reversible.
Leading zeroes are not allowed in either n or reverse(n).
There are 120 reversible numbers below one-thousand.
How many reversible numbers are there below one-billion (10^9)?
"""
EVEN_DIGITS = [0, 2, 4, 6, 8]
ODD_DIGITS = [1, 3, 5, 7, 9]
def slow_reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
"""
Count the number of reversible numbers of given length.
Iterate over possible digits considering parity of current sum remainder.
>>> slow_reversible_numbers(1, 0, [0], 1)
0
>>> slow_reversible_numbers(2, 0, [0] * 2, 2)
20
>>> slow_reversible_numbers(3, 0, [0] * 3, 3)
100
"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
result = 0
for digit in range(10):
digits[length // 2] = digit
result += slow_reversible_numbers(
0, (remainder + 2 * digit) // 10, digits, length
)
return result
result = 0
for digit1 in range(10):
digits[(length + remaining_length) // 2 - 1] = digit1
if (remainder + digit1) % 2 == 0:
other_parity_digits = ODD_DIGITS
else:
other_parity_digits = EVEN_DIGITS
for digit2 in other_parity_digits:
digits[(length - remaining_length) // 2] = digit2
result += slow_reversible_numbers(
remaining_length - 2,
(remainder + digit1 + digit2) // 10,
digits,
length,
)
return result
def slow_solution(max_power: int = 9) -> int:
"""
To evaluate the solution, use solution()
>>> slow_solution(3)
120
>>> slow_solution(6)
18720
>>> slow_solution(7)
68720
"""
result = 0
for length in range(1, max_power + 1):
result += slow_reversible_numbers(length, 0, [0] * length, length)
return result
def reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
"""
Count the number of reversible numbers of given length.
Iterate over possible digits considering parity of current sum remainder.
>>> reversible_numbers(1, 0, [0], 1)
0
>>> reversible_numbers(2, 0, [0] * 2, 2)
20
>>> reversible_numbers(3, 0, [0] * 3, 3)
100
"""
# There exist no reversible 1, 5, 9, 13 (ie. 4k+1) digit numbers
if (length - 1) % 4 == 0:
return 0
return slow_reversible_numbers(remaining_length, remainder, digits, length)
def solution(max_power: int = 9) -> int:
"""
To evaluate the solution, use solution()
>>> solution(3)
120
>>> solution(6)
18720
>>> solution(7)
68720
"""
result = 0
for length in range(1, max_power + 1):
result += reversible_numbers(length, 0, [0] * length, length)
return result
def benchmark() -> None:
"""
Benchmarks
"""
# Running performance benchmarks...
# slow_solution : 292.9300301000003
# solution : 54.90970860000016
from timeit import timeit
print("Running performance benchmarks...")
print(f"slow_solution : {timeit('slow_solution()', globals=globals(), number=10)}")
print(f"solution : {timeit('solution()', globals=globals(), number=10)}")
if __name__ == "__main__":
print(f"Solution : {solution()}")
benchmark()
# for i in range(1, 15):
# print(f"{i}. {reversible_numbers(i, 0, [0]*i, i)}")