Introduction | Environment | Dataset | Experiments | Citation | Contact Us
This repository presents WiMANS, including the dataset, source code, and documents. To the best of our knowledge, WiMANS is the first WiFi-based multi-user activity sensing dataset based on WiFi Channel State Information (CSI). WiMANS contains 11286 CSI samples of dual WiFi bands (2.4 / 5 GHz) and synchronized videos for reference and unexplored tasks (e.g., multi-user pose estimation). Each 3-second sample includes 0 to 5 users performing identical/different activities simultaneously, annotated with (anonymized) user identities, locations, and activities.
Sample "act_30_25" | WiFi CSI (5GHz) | Synchronized Video |
Sample "act_49_41" | WiFi CSI (2.4GHz) | Synchronized Video |
Sample "act_88_30" | WiFi CSI (2.4GHz) | Synchronized Video |
- Ubuntu 20.04
- Python 3.9.12
- SciPy 1.7.3
- NumPy 1.21.5
- Pandas 1.4.2
- PyTorch 2.0.1
We suggest to create the environment by installing environment.yaml
with Anaconda.
conda env create -f environment.yaml
conda activate WiMANS
Please extract the WiMANS dataset under the dataset
directory.
-
Step 1: Download the WiMANS dataset from [Kaggle]
-
Step 2: Extract the entire WiMANS dataset under the
dataset
directoryupzip dataset.zip
-
Step 3: Make sure the extracted WiMANS dataset follows such a file structure
dataset | - README.md | - annotation.csv # labels, annotations (e.g., user identities, locations, activities) | - wifi_csi | | - mat | | | - act_1_1.mat # raw CSI sample labeled "act_1_1" | | | - act_1_2.mat # raw CSI sample labeled "act_1_2" | | | - ... # totally 11286 raw CSI samples (*.mat files) | | - amp | | | - act_1_1.npy # CSI amplitude labeled "act_1_1" | | | - act_1_2.npy # CSI amplitude labeled "act_1_2" | | | - ... # totally 11286 samples of CSI amplitude (*.npy files) | - video | | - act_1_1.mp4 # video sample labeled "act_1_1" | | - act_1_2.mp4 # video sample labeled "act_1_2" | | - ... # totally 11286 video samples (*.mp4 files)
Annotations are saved in the "annotation.csv" file, which can be read using Pandas.
import pandas as pd
data_pd_y = pd.read_csv(var_path_data_y, dtype = str)
# "var_path_data_y" is the path of "annotation.csv"
Raw CSI data are saved in "*.mat" files, which can be read using SciPy.
import scipy.io as scio
data_mat = scio.loadmat(var_path_mat)
# "var_path_mat" is the path of "*.mat" file
The preprocessed data of CSI amplitude are saved in "*.npy" files, which can be read using NumPy.
import numpy as np
data_csi = np.load(var_path)
# "var_path" is the path of "*.npy" file
Video data are saved in "*.mp4" files, which can be read using PyTorch.
import torchvision
data_video_x, _, _ = torchvision.io.read_video(var_path, output_format = "TCHW")
# "var_path" is the path of "*.mp4" file
The source code of benchmark experiments is under the benchmark
directory.
Edit benchmark/wifi_csi/preset.py
to select the number(s) of users, WiFi band(s), and environment(s).
preset = {
...
"data": {
"num_users": ["0", "1", "2", "3", "4", "5"],# e.g., ["0", "1"], ["2", "3", "4", "5"]
"wifi_band": ["2.4"], # e.g., ["2.4"], ["5"], ["2.4", "5"]
"environment": ["classroom"], # e.g., ["classroom"], ["meeting_room"], ["empty_room"]
...
},
...
}
(Optional) We use benchmark/wifi_csi/preprocess.py
to calculate the amplitude of raw WiFi CSI. --dir_mat
defines the input directory of raw WiFi CSI. --dir_amp
defines the output directory of CSI amplitude. The following code uses the raw WiFi CSI in dataset/wifi_csi/mat
to calculate the amplitude and saves the amplitude files to dataset/wifi_csi/amp
.
python benchmark/wifi_csi/preprocess.py --dir_mat="dataset/wifi_csi/mat" --dir_amp="dataset/wifi_csi/amp"
Note that this step is optional because we have already provided the preprocessed data in dataset/wifi_csi/amp
.
Edit benchmark/wifi_csi/preset.py
to set data directory and to tune the hyperparameters, including the learning rate, batch size, etc.
Use benchmark/wifi_csi/run.py
to run experiments for WiFi-based models. --model
defines the WiFi-based model for experiments. --task
defines the human sensing task to evaluate. --repeat
defines the number of repeated experiments. If these arguments are not provided, models will load the default settings in benchmark/wifi_csi/preset.py
.
--model
: "ST-RF", "MLP", "LSTM", "CNN-1D", "CNN-2D", "CLSTM", "ABLSTM", "THAT"--task
: "identity", "location", "activity"
The following code repeats experiments 10 times to run the MLP model for WiFi-based human activity recognition.
python benchmark/wifi_csi/run.py --model="MLP" --task="activity" --repeat=10
After experiments, the results will be saved in result.json
, which can be modified in benchmark/wifi_csi/preset.py
.
Edit benchmark/video/preset.py
to select the number(s) of users and environment(s).
preset = {
...
"data": {
"num_users": ["0", "1", "2", "3", "4", "5"],# e.g., ["0", "1"], ["2", "3", "4", "5"]
"environment": ["classroom"], # e.g., ["classroom"], ["meeting_room"], ["empty_room"]
},
...
}
We preprocess video data according to the original papers of video-based models. --path_data_x
defines the input directory of raw videos. --path_data_y
defines the path of annotation file. --model
defines the model for which the videos should be preprocessed. --path_data_pre_x
defines the output directory of preprocessed videos (*.npy).
--model
: "ResNet", "S3D", "MViT-v1", "MViT-v2", "Swin-T", "Swin-S"
The following code preprocesses videos in dataset/video
for the ResNet model and saves preprocessed files to dataset/cache
.
python benchmark/video/preprocess.py --path_data_x="dataset/video" --path_data_y="dataset/annotation.csv" --model="ResNet" --path_data_pre_x="dataset/cache"
Edit benchmark/video/preset.py
to set data directory and to tune the hyperparameters, including the learning rate, batch size, etc.
Use benchmark/video/run.py
to run experiments for video-based models. --model
defines the video-based model for experiments. --task
defines the human sensing task to evaluate. --repeat
defines the number of repeated experiments. If these arguments are not provided, models will load the default settings in benchmark/video/preset.py
.
--model
: "ResNet", "S3D", "MViT-v1", "MViT-v2", "Swin-T", "Swin-S"--task
: "identity", "location", "activity"
The following code repeats experiments 10 times to run the ResNet model for video-based human activity recognition.
python benchmark/video/run.py --model="ResNet" --task="activity" --repeat=10
After experiments, the results will be saved in result.json
, which can be modified in benchmark/video/preset.py
.
If you find this repository useful for your research, please consider citing our paper:
@article{huang2024wimans,
title={WiMANS: A Benchmark Dataset for WiFi-based Multi-user Activity Sensing},
author={Huang, Shuokang and Li, Kaihan and You, Di and Chen, Yichong and Lin, Arvin and Liu, Siying and Li, Xiaohui and McCann, Julie A},
journal={arXiv preprint arXiv:2402.09430},
year={2024}
}
Please feel free to contact us if you have any questions about WiMANS.
- Shuokang Huang: s.huang21@imperial.ac.uk
- Professor Julie A. McCann: j.mccann@imperial.ac.uk