This repository has been archived by the owner on Jan 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathgenerate_samples.py
117 lines (94 loc) · 4.09 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
-------------------------------------------------
File Name: generate_samples.py
Date: 2019/10/27
Description: Generate single image samples from a particular depth of a model
Modified from: https://github.com/akanimax/pro_gan_pytorch
-------------------------------------------------
"""
import os
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torchvision.utils import save_image
from models.GAN import Generator
def parse_arguments():
"""
default command line argument parser
:return: args => parsed command line arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/sample.yaml')
parser.add_argument("--generator_file", action="store", type=str,
help="pretrained weights file for generator", required=True)
parser.add_argument("--num_samples", action="store", type=int,
default=300, help="number of synchronized grids to be generated")
parser.add_argument("--output_dir", action="store", type=str,
default="output/",
help="path to the output directory for the frames")
parser.add_argument("--input", action="store", type=str,
default=None, help="the dlatent code (W) for a certain sample")
parser.add_argument("--output", action="store", type=str,
default="output.png", help="the output for the certain samples")
args = parser.parse_args()
return args
def adjust_dynamic_range(data, drange_in=(-1, 1), drange_out=(0, 1)):
"""
adjust the dynamic colour range of the given input data
:param data: input image data
:param drange_in: original range of input
:param drange_out: required range of output
:return: img => colour range adjusted images
"""
if drange_in != drange_out:
scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (
np.float32(drange_in[1]) - np.float32(drange_in[0]))
bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
data = data * scale + bias
return torch.clamp(data, min=0, max=1)
def main(args):
"""
Main function for the script
:param args: parsed command line arguments
:return: None
"""
from config import cfg as opt
opt.merge_from_file(args.config)
opt.freeze()
print("Creating generator object ...")
# create the generator object
gen = Generator(resolution=opt.dataset.resolution,
num_channels=opt.dataset.channels,
structure=opt.structure,
**opt.model.gen)
print("Loading the generator weights from:", args.generator_file)
# load the weights into it
gen.load_state_dict(torch.load(args.generator_file))
# path for saving the files:
save_path = args.output_dir
os.makedirs(save_path, exist_ok=True)
latent_size = opt.model.gen.latent_size
out_depth = int(np.log2(opt.dataset.resolution)) - 2
if args.input is None:
print("Generating scale synchronized images ...")
for img_num in tqdm(range(1, args.num_samples + 1)):
# generate the images:
with torch.no_grad():
point = torch.randn(1, latent_size)
point = (point / point.norm()) * (latent_size ** 0.5)
ss_image = gen(point, depth=out_depth, alpha=1)
# color adjust the generated image:
ss_image = adjust_dynamic_range(ss_image)
# save the ss_image in the directory
save_image(ss_image, os.path.join(save_path, str(img_num) + ".png"))
print("Generated %d images at %s" % (args.num_samples, save_path))
else:
code = np.load(args.input)
dlatent_in = torch.unsqueeze(torch.from_numpy(code), 0)
ss_image = gen.g_synthesis(dlatent_in, depth=out_depth, alpha=1)
# color adjust the generated image:
ss_image = adjust_dynamic_range(ss_image)
save_image(ss_image, args.output)
if __name__ == '__main__':
main(parse_arguments())