-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMPC_MCF.m
394 lines (325 loc) · 10.9 KB
/
MPC_MCF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
function [rebalanceQueue, cplex_out]=MPC_MCF(RoadNetwork,RebWeight,Passengers,Flags)
% Taken from AMoD-power:TIBalancedPowerFlow and edited as needed.
% Takes a road network (RoadNetwork), and a set of predicted passenger demands (Passengers) and
% returns the first rebalancing actions of the optimal policy.
% Inputs:
% - struct RoadNetwork
% -- cell{nx1} RoadGraph: RoadGraph{i} contains the neighbors of node i in the road graph
% -- matrix(nxn) TravelTimes: TravelTimes(i,j) is the quantized travel time between nodes i and j
% -- int T: Quantized length of the planning horizon
% -- matrix(nx1) Starters: Starters(t,i) gives the number of available vehicles at station i and time t
%
% - float RebWeight: relative cost between of idle vehicles vs traveling vehicles
%
% - struct Passengers
% -- matrix(lx3) FlowsOut: Listing of predicted flows. l is arbitrary.
% -- FlowsOut(i,:) := [origin node, destination node, departure_time, expected demand] for the ith flow.
% --
%
% - struct Flags
% -- int milpflag: if 1 solve as Mixed-Integer Linear Program (MILP)
% -- float sourcerelaxflag: if 1 add slack variables to relax the contraint of meeting demand
%% Unpack things
T=RoadNetwork.T;
RoadGraph=RoadNetwork.RoadGraph;
TravelTimes=RoadNetwork.TravelTimes;
Starters=RoadNetwork.Starters; % Starters(i) gives the number of available vehs at t=1
FlowsOut = Passengers.FlowsOut;
milpflag=Flags.milpflag;
%sourcerelaxflag=Flags.sourcerelaxflag;
%% Utilities
debugflag=1; %Makes output verbose
DIAGNOSTIC_FLAG=0; % Diagnoses state allocation. Useful for initial debugging.
%CongestionCost=1e3; %The cost of violating the congestion constraint
SourceRelaxCost=1e6; % The cost of dropping a source or sink altogether
WaitTimeCost = SourceRelaxCost / T; %The cost per unit of time letting customers wait.
%Clean up road graph.
for i=1:length(RoadGraph)
RoadGraph{i}=sort(unique(RoadGraph{i}));
end
%Nodes in ReverseRoadGraph{i} are such that RoadGraph{ReverseRoadGraph{i}} contains
%i
ReverseRoadGraph=cell(size(RoadGraph));
for i=1:length(RoadGraph)
for j=RoadGraph{i}
ReverseRoadGraph{j}=[ReverseRoadGraph{j} i];
end
end
for i=1:length(ReverseRoadGraph)
ReverseRoadGraph{i}=sort(unique(ReverseRoadGraph{i}));
end
%Nodes in ReversePowerGraph{i} are such that PowerGraph{ReversePowerGraph{i}} contains
%i
N=length(RoadGraph);
M=N;
S = N;
E=0;
NumRoadEdges=zeros(N,1);
for i=1:N
NumRoadEdges(i)=length(RoadGraph{i});
E=E+length(RoadGraph{i});
end
cumRoadNeighbors=cumsum(NumRoadEdges);
cumRoadNeighbors=[0;cumRoadNeighbors(1:end-1)];
RoadNeighborCounter=sparse([],[],[],N,N,E);
TempNeighVec=zeros(N,1);
for i=1:N
for j=RoadGraph{i}
TempNeighVec(j)=1;
end
NeighCounterLine=cumsum(TempNeighVec);
for j=RoadGraph{i}
RoadNeighborCounter(i,j)=NeighCounterLine(j);
end
TempNeighVec=zeros(N,1);
end
% build finders
StateSize= T*E + T*E + T*E + T*E;
numFlowVariables = T*E + T*E + T*E + T*E;
if debugflag
fprintf('State size: %d, of which %d are flow variables \n',StateSize, numFlowVariables)
end
FindRoadLinkPtij= @(t,i,j) (t-1)*E +cumRoadNeighbors(i) + RoadNeighborCounter(i,j);
FindRoadLinkRtij= @(t,i,j) T*E + (t-1)*E + cumRoadNeighbors(i) + RoadNeighborCounter(i,j);
FindDropPaxtij = @(t,i,j) T*E + T*E + (t-1)*E + cumRoadNeighbors(i) + RoadNeighborCounter(i,j); % sinks are grouped by destination!
FindRealPaxtij = @(t,i,j) T*E + T*E + T*E + (t-1)*E + cumRoadNeighbors(i) + RoadNeighborCounter(i,j);
%% COST
if debugflag
fprintf('Building cost: travel time...')
end
f_cost=zeros(StateSize,1);
for i=1:N
for t=1:T
for j=RoadGraph{i}
% rebalancing costs
if i ~= j
f_cost(FindRoadLinkRtij(t,i,j))= RebWeight*TravelTimes(i,j); %
else
f_cost(FindRoadLinkRtij(t,i,j))= TravelTimes(i,j);
end
% waiting costs
f_cost(FindDropPaxtij(t,i,j))= SourceRelaxCost;
f_cost(FindRealPaxtij(t,i,j))= WaitTimeCost*t;
end
end
end
%% INITIALIZING CONSTRAINTS
if (debugflag)
disp('Initializing constraints')
end
n_eq_constr = T*N*N + T*N + N*N;
n_eq_entries = T*N*N*3 + T*N*N*4 + N*N*T;
Aeqsparse=zeros(n_eq_entries,3);
Beq=zeros(n_eq_constr,1);
Aeqrow=1;
Aeqentry=1;
% Vehicles: E inequality constraints, one per road. Each inequality
% constraint has (M+1)*C + 1 entries one per flow per charge level, incl. reb. and one for the
% relaxation.
if debugflag
fprintf('Building LP program with statesize %d,%d equality constraints with %d entries', ...
StateSize,n_eq_constr, n_eq_entries)
end
%% EQUALITY CONSTRAINTS
if (debugflag)
disp('Building sparse equality constraints...')
end
% Conservation of rebalancers
if debugflag
disp('Building road map for rebalancers')
fprintf('Time step: ')
end
% we want the remaining vehicles to be evenly distributed
vdesired = max(floor(sum(sum(Starters)) / S), 0);
Breakers = zeros(S,1);
Breakers(1:end) = vdesired;
% there are two types of constraints, those that i) deal with pax routing, ii) deal with veh consistency
for t=1:T
if debugflag
fprintf(' %d/%d ',t,T)
end
for i=1:N
% i) pax constraints
if ~isempty(RoadGraph{i})
for j=RoadGraph{i} %Out-flows, pax embark to their destination
%if (TravelTimes(i,j)+t<=T)
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkPtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
%end
% waiting, we get to postpone the departure
Aeqsparse(Aeqentry,:)=[Aeqrow,FindDropPaxtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
% customers that waited the last timestep
%if t > 1
% Aeqsparse(Aeqentry,:)=[Aeqrow,FindDropPaxtij(t-1,i,j), -1];
% Aeqentry=Aeqentry+1;
%end
% initial customers that get to wait
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRealPaxtij(t,i,j), -1];
Aeqentry=Aeqentry+1;
% all of this must equal the predicted demand for (t,i,j)
% and we want this to equal the total amount of demand at that time and node
if t > 1
Beq(Aeqrow)= FlowsOut{t}(i,j);
else
Beq(Aeqrow) = 0;
end
Aeqrow=Aeqrow+1;
end
end
% ii) vehicle constraints
if ~isempty(RoadGraph{i})
for j=RoadGraph{i} %Out-flows
%if (TravelTimes(i,j)+t<=T)
% rebalancing outlfows
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkRtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
% pax outflows
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkPtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
%end
end
end
if ~isempty(ReverseRoadGraph{i})
for j=ReverseRoadGraph{i} %In-flows
if (TravelTimes(j,i) < t)
% rebalancing inflows
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkRtij(t - TravelTimes(j,i),j,i),-1];
Aeqentry=Aeqentry+1;
% pax inflows
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkPtij(t - TravelTimes(j,i),j,i), -1];
Aeqentry=Aeqentry+1;
end
end
end
if t == T
Beq(Aeqrow)= Starters(t,i);% - Breakers(i);
else
Beq(Aeqrow)= Starters(t,i);
end
Aeqrow=Aeqrow+1;
end
end
for i=1:N
for j=1:N
for t=1:T
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRealPaxtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
end
Beq(Aeqrow)= FlowsOut{1}(i,j);
Aeqrow=Aeqrow+1;
end
end
if debugflag
disp('Done! Now moving to inequalities...')
end
%% INEQUALITY CONSTRAINTS
if debugflag
disp('Building sparse inequality constraints...')
end
%% Make equality and inequality matrices
if Aeqrow-1~=n_eq_constr
fprintf('ERROR: unexpected number of equality constraints (expected: %d, actual: %d)\n',n_eq_constr,Aeqrow-1)
end
if Aeqentry-1~=n_eq_entries
fprintf('Warning: unexpected number of equality entries (expected: %d, actual: %d)\n',n_eq_entries,Aeqentry-1)
end
if (debugflag)
disp('Building matrices from sparse representation')
end
Aeqsparse=Aeqsparse(1:Aeqentry-1,:);
Aeq=sparse(Aeqsparse(:,1),Aeqsparse(:,2),Aeqsparse(:,3), Aeqrow-1, StateSize);
%% Upper and lower bounds
if (debugflag)
disp('Building upper and lower bounds')
end
lb=zeros(StateSize,1); %everything is non-negative
ub=Inf*ones(StateSize,1); %no constraints
%% Call optimizer
if (debugflag)
disp('Calling optimizer')
end
%tic
%options = cplexoptimset('Display', 'on');% 'Algorithm', 'interior-point');
%%options = cplexoptimset('Display', 'on', 'Algorithm', 'interior-point');
%%options.barrier.crossover = -1;
%%options.barrier.limits.objrange = 1e50;
%[cplex_out,fval,exitflag,output]=cplexlp(f_cost,[],[],Aeq,Beq,lb,ub,[],options) ;
%toc
%% Variable type
if (debugflag)
disp('Building constraint type')
end
% Building block
ConstrType=char(zeros(1,StateSize));
% Continuous-probability version
if (~milpflag)
ConstrType(1:end)='C';
else
% Actual MILP formulation
ConstrType(1:end)='I';
end
if (milpflag)
fprintf('Solving as MILP.')
MyOptions=cplexoptimset('cplex');;
%MyOptions.parallel=1;
%MyOptions.threads=8;
%MyOptions.mip.tolerances.mipgap=0.01;
%MyOptions.Display = 'iter';
if (debugflag)
tic
end
[cplex_out,fval,exitflag,output]=cplexmilp(f_cost,[],[],Aeq,Beq,[],[],[],lb,ub,ConstrType,[],MyOptions);
if (debugflag)
toc
end
else
if (debugflag)
tic
end
[cplex_out,fval,exitflag,output]=cplexlp(f_cost,[],[],Aeq,Beq,lb,ub) ;
if (debugflag)
toc
end
end
if (debugflag)
fprintf('Solved! fval: %f\n', fval)
disp(output)
%fval
%exitflag
%output
end
delivered = 0;
dropped = 0;
waiting = 0;
total_wait = 0;
for t=1:T
for i=1:N
for j=1:N
delivered = delivered + cplex_out(FindRoadLinkPtij(t,i,j));
dropped = dropped + cplex_out(FindDropPaxtij(t,i,j));
if t > 1
w = cplex_out(FindRealPaxtij(t,i,j));
waiting = waiting + w;
if w > 0
total_wait = total_wait + w*(t-1);
end
end
end
end
end
fprintf('Total delivered: %f\n', delivered)
fprintf('Total dropped: %f\n', dropped)
fprintf('Total waiting: %f\n', waiting)
fprintf('Average waiting: %f\n', total_wait / waiting)
rebalanceQueue = cell(S,1);
for i = 1:S
for j = 1:S
if i ~= j
for k = 1:cplex_out(FindRoadLinkRtij(1,i,j))
rebalanceQueue{i} = [rebalanceQueue{i} j];
end
end
end
end
spy(Aeq)