-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add create_config, moove log_path to general
- Loading branch information
Showing
4 changed files
with
370 additions
and
320 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
import os | ||
import subprocess | ||
import tempfile | ||
from datetime import datetime | ||
import math | ||
import torch | ||
|
||
import argparse | ||
from typing import Any, Dict | ||
|
||
from nanotron.logging import human_format | ||
from nanotron.models.llama import LlamaConfig | ||
|
||
from nanotron.config import ( | ||
Config, | ||
DataArgs, | ||
NanosetDatasetsArgs, | ||
S3UploadArgs, | ||
SlurmArgs, | ||
CheckpointsArgs, | ||
GeneralArgs, | ||
LightEvalConfig, | ||
LightEvalLoggingArgs, | ||
LightEvalTasksArgs, | ||
LoggingArgs, | ||
LRSchedulerArgs, | ||
ModelArgs, | ||
OptimizerArgs, | ||
AdamWOptimizerArgs, | ||
ParallelismArgs, | ||
RandomInit, | ||
TokenizerArgs, | ||
TokensArgs, | ||
LightEvalWandbLoggerConfig, | ||
DatasetStageArgs, | ||
) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("project", help="project name", type=str) | ||
parser.add_argument("--slurm", help="use slurm", action="store_true") | ||
parser.add_argument("--name", help="run name", type=str, default=None) | ||
parser.add_argument("--seed", help="seed", type=int, default=8) | ||
parser.add_argument("--priority", "--qos", "-p", help="qos to use", type=str, default="normal") | ||
parser.add_argument("--override", nargs="+", metavar="KEY=VALUE", | ||
help="Override config values. Use dot notation for nested keys.") | ||
parser.add_argument("--launch", action="store_true", help="Launch the configuration immediately") | ||
args = parser.parse_args() | ||
|
||
if args.name is not None: | ||
run = f"{args.project}-{args.name}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" | ||
else: | ||
run = f"{args.project}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" | ||
|
||
general = GeneralArgs( | ||
project=args.project, | ||
run=run, | ||
repo_id="HuggingFaceSmol/test-nanotron", | ||
logs_path="/fsx/elie_bakouch/nanotron/debug", | ||
seed=args.seed, | ||
temp_dir="/scratch", | ||
) | ||
|
||
if args.slurm: | ||
job_name=f"{args.project}-{args.name}" if args.name is not None else f"{args.project}" | ||
slurm = SlurmArgs( | ||
gpu_partition="hopper-prod", | ||
job_name=f"{args.project}-{args.name}", | ||
nodes=2, | ||
conda_path="/fsx/elie_bakouch/miniconda3/etc/profile.d/conda.sh", | ||
conda_env_path="/fsx/elie_bakouch/miniconda3/envs/smollm", | ||
exclude_nodes=["ip-26-0-161-138", "ip-26-0-161-178"], | ||
torchrun_args={ | ||
"rdzv_backend": "etcd-v2", | ||
"rdzv_endpoint": "etcd.hpc-cluster-hopper.hpc.internal.huggingface.tech:2379", | ||
"rdzv_id": "$SLURM_JOB_ID" | ||
}, | ||
qos="normal", | ||
begin="now+0minutes" | ||
) | ||
else: | ||
slurm = None | ||
|
||
model_config = LlamaConfig( | ||
bos_token_id=0, | ||
eos_token_id=0, | ||
hidden_act="silu", | ||
hidden_size=576, | ||
initializer_range=0.02, | ||
intermediate_size=1536, | ||
max_position_embeddings=2048, | ||
num_attention_heads=9, | ||
num_hidden_layers=30, | ||
num_key_value_heads=3, | ||
pretraining_tp=1, | ||
rms_norm_eps=1e-05, | ||
rope_scaling=None, | ||
tie_word_embeddings=True, | ||
use_cache=True, | ||
vocab_size=49152, | ||
) | ||
|
||
lighteval = LightEvalConfig( | ||
tasks=LightEvalTasksArgs( | ||
tasks="early-signal", # "generatives", "all" | ||
custom_tasks="nanotron.lighteval.evaluation_tasks", | ||
max_samples=1000, # Cap very large evals or for debugging | ||
dataset_loading_processes=8, | ||
), | ||
parallelism=ParallelismArgs( | ||
dp=8, | ||
pp=1, | ||
tp=1, | ||
pp_engine="1f1b", | ||
tp_mode="ALL_REDUCE", | ||
# recompute_granularity="selective", | ||
tp_linear_async_communication=False, | ||
), | ||
batch_size=16, | ||
wandb=LightEvalWandbLoggerConfig( | ||
wandb_project=args.project, | ||
wandb_entity="eliebak", | ||
wandb_run_name=f"{run}_evals", | ||
), | ||
logging=LightEvalLoggingArgs( | ||
local_output_path=f"{general.temp_dir}/lighteval/{run}", | ||
push_details_to_hub=False, | ||
push_results_to_hub=True, | ||
push_results_to_tensorboard=True, | ||
#hub_repo_details=REPO_ID, | ||
hub_repo_results=general.repo_id, | ||
hub_repo_tensorboard=general.repo_id, | ||
tensorboard_metric_prefix="e", | ||
), | ||
slurm_template="/fsx/elie_bakouch/nanotron/src/nanotron/lighteval/run_eval.slurm.jinja", | ||
) | ||
|
||
|
||
checkpoints = CheckpointsArgs( | ||
checkpoints_path=f"checkpoints/{run}", | ||
checkpoints_path_is_shared_file_system=False, | ||
resume_checkpoint_path=None, | ||
checkpoint_interval=20, | ||
save_initial_state=False, | ||
) | ||
|
||
parallelism = ParallelismArgs( | ||
dp=8, | ||
pp=1, | ||
tp=1, | ||
pp_engine="1f1b", | ||
tp_mode="REDUCE_SCATTER", | ||
tp_linear_async_communication=True, | ||
) | ||
#Add sanity check for the number of GPUs and the number of nodes ? | ||
|
||
tokens = TokensArgs( | ||
batch_accumulation_per_replica=8, | ||
micro_batch_size=16, | ||
sequence_length=2048, | ||
train_steps=100, | ||
val_check_interval=-1, | ||
) | ||
|
||
model = ModelArgs( | ||
model_config=model_config, | ||
make_vocab_size_divisible_by=1, | ||
init_method=RandomInit( | ||
std=math.sqrt(model_config.hidden_size), | ||
), | ||
dtype=torch.bfloat16, | ||
) | ||
|
||
logging = LoggingArgs( | ||
# 'debug', 'info', 'warning', 'error', 'critical' and 'passive' | ||
log_level="info", | ||
log_level_replica="info", | ||
iteration_step_info_interval=1, | ||
) | ||
|
||
learning_rate_scheduler = LRSchedulerArgs( | ||
learning_rate=1e-4, #llama one | ||
lr_warmup_steps=10, | ||
lr_warmup_style="linear", | ||
lr_decay_style="linear", | ||
lr_decay_steps = 20, | ||
lr_decay_starting_step= 80, | ||
min_decay_lr=0, | ||
) | ||
|
||
|
||
optimizer = OptimizerArgs( | ||
zero_stage=0, | ||
weight_decay=0.01, | ||
clip_grad=1.0, | ||
accumulate_grad_in_fp32=True, | ||
learning_rate_scheduler=learning_rate_scheduler, | ||
optimizer_factory=AdamWOptimizerArgs( | ||
adam_eps=1e-08, | ||
adam_beta1=0.9, | ||
adam_beta2=0.95, | ||
torch_adam_is_fused=True, | ||
), | ||
) | ||
|
||
tokenizer = TokenizerArgs( | ||
tokenizer_name_or_path="HuggingFaceTB/cosmo2-tokenizer", | ||
) | ||
|
||
s3_upload = S3UploadArgs( | ||
upload_s3_path=f"s3://elie-exp/debug_nanotron/test/", | ||
remove_after_upload=True, | ||
s5cmd_numworkers=16, | ||
s5cmd_concurrency=5, | ||
s5cmd_path="/fsx/elie_bakouch/miniconda3/envs/smollm/bin/s5cmd", | ||
) | ||
|
||
data_stages=[ | ||
DatasetStageArgs( | ||
data=DataArgs( | ||
dataset=NanosetDatasetsArgs( | ||
dataset_folder="/fsx/elie_bakouch/nanotron/datasets/cosmopedia-v2", | ||
), | ||
num_loading_workers=0, | ||
seed=general.seed, | ||
), | ||
name="training stage", | ||
start_training_step=1, | ||
), | ||
] | ||
|
||
config = Config( | ||
general=general, | ||
checkpoints=checkpoints, | ||
parallelism=parallelism, | ||
model=model, | ||
tokenizer=tokenizer, | ||
logging=logging, | ||
tokens=tokens, | ||
optimizer=optimizer, | ||
data_stages=data_stages, | ||
s3_upload=s3_upload, | ||
lighteval=lighteval, | ||
slurm=slurm, | ||
) | ||
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | ||
dir = os.path.dirname(__file__) | ||
os.makedirs(config.general.config_folder_path, exist_ok=True) | ||
config_path_yaml = f"{config.general.config_folder_path}/{timestamp}.yaml" | ||
config.save_as_yaml(config_path_yaml) | ||
|
||
os.makedirs(f"{config.general.slurm_logs_path}/", exist_ok=True) | ||
|
||
print(f"Configuration saved to: {config_path_yaml}") | ||
|
||
if args.launch: | ||
launcher_path = os.path.join(dir, "launcher.py") | ||
launch_command = [ | ||
"python", launcher_path, | ||
config_path_yaml, | ||
] | ||
|
||
if args.override: | ||
launch_command.extend(["--override"] + args.override) | ||
|
||
print(f"Launching configuration with command: {' '.join(launch_command)}") | ||
subprocess.run(launch_command, check=True) | ||
else: | ||
print("To launch this configuration, run:") | ||
print(f"python {os.path.join(dir, 'launcher.py')} {config_path_yaml} " | ||
f"--override general.config_path={config_path_yaml}") | ||
|
||
if args.override: | ||
print(f" {' '.join(args.override)}") |
Oops, something went wrong.