Skip to content

Update LLM Perf Benchmarks - CUDA PyTorch #6

Update LLM Perf Benchmarks - CUDA PyTorch

Update LLM Perf Benchmarks - CUDA PyTorch #6

name: Update LLM Perf Benchmarks - CUDA PyTorch
on:
workflow_dispatch:
schedule:
- cron: "0 0 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
build_image_and_run_benchmarks:
strategy:
fail-fast: false
matrix:
subset: [unquantized, bnb, awq, gptq]
machine: [{ name: 1xA10, runs-on: [single-gpu, nvidia-gpu, a10, ci] }]
runs-on: ${{ matrix.machine.runs-on }}
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Build image
run: docker build
--build-arg USER_ID=$(id -u)
--build-arg GROUP_ID=$(id -g)
--build-arg TORCH_CUDA=cu121
--build-arg CUDA_VERSION=12.1.1
--tag llm-perf-cuda:12.1.1
docker/cuda
- name: Run benchmarks
uses: addnab/docker-run-action@v3
env:
SUBSET: ${{ matrix.subset }}
MACHINE: ${{ matrix.machine.name }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
with:
image: llm-perf-cuda:12.1.1
options: |
--rm
--gpus all
--shm-size 64G
--env SUBSET
--env MACHINE
--env HF_TOKEN
--env MKL_THREADING_LAYER=GNU
--env HF_HUB_ENABLE_HF_TRANSFER=1
--volume ${{ github.workspace }}:/workspace
--workdir /workspace
run: |
pip install packaging && pip install flash-attn einops scipy auto-gptq optimum bitsandbytes autoawq codecarbon
pip install -U transformers huggingface_hub[hf_transfer]
pip install -e .
python llm_perf/update_llm_perf_cuda_pytorch.py