Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: air-gapped deployments #326

Merged
merged 1 commit into from
Jul 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 32 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ length of 512 tokens:
- [Docker Images](#docker-images)
- [API Documentation](#api-documentation)
- [Using a private or gated model](#using-a-private-or-gated-model)
- [Air gapped deployment](#air-gapped-deployment)
- [Using Re-rankers models](#using-re-rankers-models)
- [Using Sequence Classification models](#using-sequence-classification-models)
- [Using SPLADE pooling](#using-splade-pooling)
Expand Down Expand Up @@ -100,11 +101,10 @@ Below are some examples of the currently supported models:
### Docker

```shell
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
model=Alibaba-NLP/gte-base-en-v1.5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model --revision $revision
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
```

And then you can make requests like
Expand Down Expand Up @@ -347,6 +347,29 @@ token=<your cli READ token>
docker run --gpus all -e HF_API_TOKEN=$token -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id $model
```

### Air gapped deployment

To deploy Text Embeddings Inference in an air-gapped environment, first download the weights and then mount them inside
the container using a volume.

For example:

```shell
# (Optional) create a `models` directory
mkdir models
cd models

# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5

# Set the models directory as the volume path
volume=$PWD

# Mount the models directory inside the container with a volume and set the model ID
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id /data/gte-base-en-v1.5
```

### Using Re-rankers models

`text-embeddings-inference` v0.4.0 added support for CamemBERT, RoBERTa and XLM-RoBERTa Sequence Classification models.
Expand Down Expand Up @@ -428,11 +451,10 @@ found [here](https://github.com/huggingface/text-embeddings-inference/blob/main/
You can use the gRPC API by adding the `-grpc` tag to any TEI Docker image. For example:

```shell
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
model=Alibaba-NLP/gte-base-en-v1.5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4-grpc --model-id $model --revision $revision
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4-grpc --model-id $model
```

```shell
Expand Down Expand Up @@ -463,10 +485,9 @@ cargo install --path router -F metal
You can now launch Text Embeddings Inference on CPU with:

```shell
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
model=Alibaba-NLP/gte-base-en-v1.5

text-embeddings-router --model-id $model --revision $revision --port 8080
text-embeddings-router --model-id $model --port 8080
```

**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
Expand Down Expand Up @@ -502,10 +523,9 @@ cargo install --path router -F candle-cuda -F http --no-default-features
You can now launch Text Embeddings Inference on GPU with:

```shell
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
model=Alibaba-NLP/gte-base-en-v1.5

text-embeddings-router --model-id $model --revision $revision --port 8080
text-embeddings-router --model-id $model --port 8080
```

## Docker build
Expand Down
23 changes: 23 additions & 0 deletions docs/source/en/quick_tour.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,3 +121,26 @@ curl 127.0.0.1:8080/predict \
-d '{"inputs":[["I like you."], ["I hate pineapples"]]}' \
-H 'Content-Type: application/json'
```

## Air gapped deployment

To deploy Text Embeddings Inference in an air-gapped environment, first download the weights and then mount them inside
the container using a volume.

For example:

```shell
# (Optional) create a `models` directory
mkdir models
cd models

# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5

# Set the models directory as the volume path
volume=$PWD

# Mount the models directory inside the container with a volume and set the model ID
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.4 --model-id /data/gte-base-en-v1.5
```
4 changes: 2 additions & 2 deletions router/src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,10 @@ static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;
struct Args {
/// The name of the model to load.
/// Can be a MODEL_ID as listed on <https://hf.co/models> like
/// `thenlper/gte-base`.
/// `Alibaba-NLP/gte-base-en-v1.5`.
/// Or it can be a local directory containing the necessary files
/// as saved by `save_pretrained(...)` methods of transformers
#[clap(default_value = "thenlper/gte-base", long, env)]
#[clap(default_value = "Alibaba-NLP/gte-base-en-v1.5", long, env)]
#[redact(partial)]
model_id: String,

Expand Down
Loading