-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyEK60.py
391 lines (321 loc) · 12.5 KB
/
MyEK60.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import pickle
import numpy as np
import numpy.ma as ma
import matplotlib.pyplot as plt
from scipy.io import loadmat, savemat
from scipy.stats import mode
from scipy.interpolate import RegularGridInterpolator as rgi
from scipy.ndimage.filters import gaussian_filter
from MyMapFunctions import haversines
from MyMITgcmUtils import remove_nans_laterally as interp_nans
from MyColormaps import truncate_colormap
from MyMVP import flatten_to_line
from MyInterp import nan_gaussian_filter
from MyFunctions import get_contour
def load_parsed_data(file_in, freq):
"""
Load EK60 data that has been parsed but otherwise not post processed
Input
-----
file_in: str
Of the form D201509dd-Thhmmss
freq: int
Frequency in kHz. One of 38, 120, or 200
Returns
-------
D: numpy record array
Relevant fields: range, Sv, power, latitude, longitude
"""
base_dir = '/home/hugke729/PhD/Data/Shipboard/EK60/parsed/'
data_dir = base_dir + str(freq) + 'kHz/'
D = loadmat(data_dir + file_in + '.mat', squeeze_me=True)['x']
return D
def rec_array_to_dict(D):
"""
Convert data from numpy record array to standard arrays
"""
# Some files change the resolution part way through.
# Reasonable simplification (albeit losing small bit of data) is to
# take the biggest chunk where resolution is unchanging
N_per_profile = [x.size for x in D['range']]
inds = N_per_profile == mode(N_per_profile)[0][0]
# 1D arrays
lat, lon = [D[key][inds] for key in ['latitude', 'longitude']]
lat, lon = [interp_nans(arr.astype('float')) for arr in [lat, lon]]
z = D['range'][inds][0]
time = D['time'][inds]
# 2D arrays
Sv = np.column_stack(D['Sv'][inds])
power = np.column_stack(D['power'][inds])
return dict(z=z, lat=lat, lon=lon, power=power, Sv=Sv, time=time)
def fix_latlon(D):
"""Fix raw GPS data that imply that ship's position doesn't change for
periods of time. Easily identifiable as times when difference in lat and
lon are identically zero
Needs extra work for repeat 4
"""
lat, lon = D['lat'], D['lon']
N = len(lat)
dlat = np.diff(lat)
changing = np.insert(dlat != 0, 0, True)
D['lat'] = np.interp(np.r_[:N], np.where(changing)[0], lat[changing])
D['lon'] = np.interp(np.r_[:N], np.where(changing)[0], lon[changing])
return D
def calc_dist(D):
if np.any(D['lat'] > 75.7):
# This is crude check to see if it is along-channel transect
try:
dist = flatten_to_line(D['lon'], D['lat'])/1000
except IndexError:
# Some files have points beyond line used in 'flatten_to_line'.
# These don't currently work, but could with some effort
dist = haversines(D['lon'], D['lat'])[0]
print('Distance coordinate not quite right')
else:
dist = haversines(D['lon'], D['lat'])[0]
if D['lon'][0] - D['lon'][-1] > 0:
dist = dist[::-1]
return dist
def mask_seafloor(D):
"""
Use known bathymetry to mask Sv and power
Bit too chunky without more work
"""
# Load in gridded bathymetry
bathy_file = '/home/hugke729/PhD/Data/Penny_Strait/Penny_strait.mat'
Dz = loadmat(bathy_file)
lon, lat, z = [Dz['topo' + key] for key in ['lon', 'lat', 'depth']]
z_interp = rgi((lon[:, 0], lat[0, :]), z)
z_along_line = z_interp(np.c_[D['lon'], D['lat']])
Z = D['z'][:, np.newaxis]*np.ones_like(D['Sv'])
z_below_bot = Z > z_along_line
D['power'] = ma.masked_where(z_below_bot, D['power'])
D['Sv'] = ma.masked_where(z_below_bot, D['Sv'])
return D
def plot_seafloor(ax, transect):
"""Overlays gray polygon to mask anything below seafloor.
Only currently works for along-channel transects"""
if 'repeat' in transect or 'long' in transect:
d_vs_z_fname = '/home/hugke729/PhD/Data/Shipboard/MVP/transect_depth.txt'
dist, depth = np.genfromtxt(d_vs_z_fname, unpack=True, delimiter=',')
ax.autoscale(False)
ax.fill_between(dist, 250, depth, color='grey', zorder=10)
def get_Dmvp(transect):
mvp_fname = '/home/hugke729/PhD/Data/Shipboard/MVP/transects/'
mvp_fname += transect + '.p'
Dmvp = pickle.load(open(mvp_fname, 'rb'))
return Dmvp
def overlay_density_contours(ax, transect):
"""Only currently works properly for along-channel transects"""
# Before smoothing, change to evenly spaced x
Dmvp = get_Dmvp(transect)
x = Dmvp['dist_flat'] if 'dist_flat' in Dmvp else Dmvp['dist']
y, Z = Dmvp['z_c'], Dmvp['prho'].T - 1000
ax.plot(x, 5*np.ones_like(x), 'w|', zorder=5)
if x[-1] - x[0] < 0:
inds = np.argsort(x)
x = x[inds]
Z = Z[:, inds]
# Standard contour method is poor in comparison to more manual method here
# x_out = np.arange(x.min(), x.max(), 1)
# Xo, Yo = np.meshgrid(x_out, y, indexing='ij')
# sigma = rgi((x, y), Z.T)((Xo, Yo)).T
# cons = get_contour(x_out, y, sigma, levels=np.r_[26:26.75:0.25])
# for line in cons.T:
# ax.plot(x_out, nan_gaussian_filter(line, 0), c='k')
ax.contour(x, y, Z, levels=np.r_[26:26.75:0.1], colors='k')
def plot_summary(D, transect, pcolor=False, power=False, sigma_smooth=2,
quick_pcolor=True):
map_file = '/home/hugke729/PhD/Python/Maps/penny_strait.pickle'
m = pickle.load(open(map_file, 'rb'))
fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=(2, 1)),
figsize=(8.6, 2.5))
cmap = truncate_colormap('afmhot_r', minval=0.2)
arr = D['power'] if power else D['Sv']
if np.diff(D['lat'][[-1, 0]]) < 0:
arr = arr[:, ::-1]
D['lon'], D['lat'] = D['lon'][::-1], D['lat'][::-1]
arr = gaussian_filter(arr, sigma_smooth)
if power:
color_opts = dict(vmin=-160, vmax=-110, cmap=cmap)
else:
color_opts = dict(vmin=-90, vmax=-65, cmap=cmap)
# D['dist'] = calc_dist(D)
# New distance calc not thoroughly tested
D['dist'] = EK60_distance_from_time_matching(transect)
if pcolor:
if quick_pcolor:
x, y, Z = D['dist'][::5], D['z'][::5], arr[::5, ::5]
else:
x, y, Z = D['dist'], D['z'], arr
cax = axs[0].pcolormesh(x, y, Z, **color_opts)
axs[0].set(ylim=(250, 0))
plot_seafloor(axs[0], transect)
overlay_density_contours(axs[0], transect)
else:
axs[0].invert_yaxis()
cax = axs[0].imshow(arr, aspect=4, **color_opts)
m.fillcontinents(ax=axs[1])
m.plot(D['lon'], D['lat'], latlon=True)
m.plot(D['lon'][0], D['lat'][0], latlon=True, marker='o')
cbar = fig.colorbar(cax)
cbar_lab = 'Power' if power else 'Volume backscattering'
cbar.set_label(cbar_lab)
return fig, axs, cax
def define_files_for_transect():
"""Define which files are needed to cover each transect"""
files_for_transect = dict(
wellington_cross_1=[
'D20150926-T070020'],
full_long=[
'D20150926-T070020',
'D20150926-T134201',
'D20150926-T203334',
'D20150927-T032659',
'D20150927-T165823'],
maury_repeat_1=[
'D20150927-T202303',
'D20150928-T001538',
'D20150928-T051735'],
maury_repeat_2=[
'D20150928-T051735',
'D20150928-T143835',
'D20150928-T143936'],
maury_repeat_3=[
'D20150928-T143835',
'D20150928-T143936',
'D20150929-T170801',
'D20150928-T171001'],
maury_repeat_4=[
'D20150928-T171001',
'D20150928-T193711',
'D20150928-T220714'],
maury_repeat_5=[
'D20150928-T220714',
'D20150929-T003718',
'D20150929-T030545'],
wellington_cross_2=[
'D20150929-T030545',
'D20150929-T170826'],
wellington_cross_3=[
'D20150929-T170826',
'D20150929-T201341'])
files_for_transect = dict(
wellington_cross_1=[
('D20150926-T070020', np.s_[270:3300])],
full_long=[
('D20150926-T070020', np.s_[3280:]),
('D20150926-T134201', np.s_[:6256]),
('D20150926-T203334', np.s_[472:5620])],
maury_repeat_1=[
('D20150927-T202303', np.s_[515:]),
('D20150928-T001538', np.s_[:]),
('D20150928-T051735', np.s_[:1087])],
# Repeat 2 missing data
maury_repeat_2=[
('D20150928-T051735', np.s_[1087:])],
maury_repeat_3=[
('D20150928-T143936', np.s_[:]),
('D20150928-T171001', np.s_[:1498])],
maury_repeat_4=[
('D20150928-T171001', np.s_[2740:]),
('D20150928-T193711', np.s_[:]),
('D20150928-T220714', np.s_[:774])],
maury_repeat_5=[
('D20150928-T220714', np.s_[830:]),
('D20150929-T003718', np.s_[:1621])],
wellington_cross_2=[
('D20150929-T170826', np.s_[:2097])],
wellington_cross_3=[
('D20150929-T170826', np.s_[2097:]),
('D20150929-T201341', np.s_[:2316])],
lancaster_sound=[
('D20150930-T022442', np.s_[2230:]),
('D20150930-T053003', np.s_[:]),
('D20150930-T083528', np.s_[:2445])])
return files_for_transect
def cat_files_to_transect(freq):
files_for_transect = define_files_for_transect()
print('Working on: ')
for transect, v in files_for_transect.items():
print(transect)
for i, (file_in, inds) in enumerate(np.array(v)):
D = load_parsed_data(file_in, freq)
D = rec_array_to_dict(D)
D = fix_latlon(D)
for k in ['power', 'Sv']:
D[k] = D[k][:, inds]
for k in ['lat', 'lon']:
D[k] = D[k][inds]
for k in ['time']:
D[k] = D[k][inds]
# Join files
if i == 0:
D_all = D
else:
for k, v in D.items():
if k == 'z':
continue
if v.ndim == 1:
D_all[k] = np.r_[D_all[k], v]
else:
D_all[k] = np.c_[D_all[k], v]
out_dir = '/home/hugke729/PhD/Data/Shipboard/EK60/transects/'
fname = out_dir + str(freq) + 'kHz/' + transect
savemat(fname, D_all)
def all_processing():
for freq in [38, 120, 200]:
cat_files_to_transect(freq)
def load_processed_data(transect_name, freq):
base_dir = '/home/hugke729/PhD/Data/Shipboard/EK60/transects/'
base_dir += str(freq) + 'kHz/'
fname = base_dir + transect_name + '.mat'
return loadmat(fname, squeeze_me=True)
def MVP_date_time_to_timeval(Dmvp):
"""Convert MVP's date and time strings to decimal days after Sep 1, 2015
Needed to compare with echosounder time
Dmvp['date'] in form 'MM-DD-YYYY'
Dmvp['time'] in form 'HH:MM:SS'
"""
day = np.array([np.float(d[3:5]) for d in Dmvp['date']])
hr, mn, sc = [np.array([np.float(d[i]) for d in Dmvp['time']])
for i in (np.s_[:2], np.s_[3:5], np.s_[6:])]
t = day + hr/24 + mn/(60*24) + sc/(60**2*24)
return t
def EK60_date_time_to_timeval(D):
"""Calculate equivalent time value returned by counterpart MVP function
above
D['time'] in form 'DD-MMM-YYYY HH:MM:SS.ssss...'
"""
day, hr, mn, sc = [
np.array([np.float(d[i]) for d in D['time'].flatten()])
for i in (np.s_[:2], np.s_[12:14], np.s_[15:17], np.s_[18:])]
t = day + hr/24 + mn/(60*24) + sc/(60**2*24)
return t
def EK60_distance_from_time_matching(transect):
"""Instead of getting distance from lat/lon, interpolate time vectors
using MVP distance vector as starting point
"""
Dmvp = get_Dmvp(transect)
dist_m = Dmvp['dist_flat']
tm = MVP_date_time_to_timeval(Dmvp)
te = EK60_date_time_to_timeval(D)
flipy_dist_e = False
if np.diff(tm[[0, -1]]) < 0:
# Ensure np.interp works
tm, dist_m = tm[::-1], dist_m[::-1]
flipy_dist_e = True
dist_e = np.interp(te, tm, dist_m)
if flipy_dist_e:
dist_e = dist_e[::-1]
return dist_e
if __name__ == '__main__':
for transect in ['full_long', 'maury_repeat_1']:
# for transect in ['maury_repeat_1']:
D = load_processed_data(transect, 120)
fig, axs, cax = plot_summary(
D, transect, pcolor=True, power=False, sigma_smooth=(0, 2),
quick_pcolor=False)
axs[0].set_title(transect)
axs[0].set(xlim=(50, 110), ylim=(150, 0), yticks=np.r_[0:201:50])
# raster_and_save(transect + '.svg', cax, dpi=300)