-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_continue_pt_gpt_twt.py
279 lines (240 loc) · 12.3 KB
/
run_continue_pt_gpt_twt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning GPT-2HLC for causal language modeling.
"""
import logging
import math
import os
import sys
from src.model_gpt2hlc.gpt2hlcLMhead import GPT2hlcLMHeadModel
from args.clm_args import DataTrainingArguments, ModelArguments
from data.utils_gpt2hlc.continue_pretrain_data_utils import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
TrainerCallback,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
class evalLogsCallback(TrainerCallback):
def on_evaluate(self, args, state, control, **kwargs):
if control.should_save:
metrics = kwargs['metrics']
perplexity = math.exp(metrics["eval_loss"])
metrics["perplexity"] = perplexity
self.save_metrics('eval_{}'.format(metrics['epoch']), metrics, args)
def save_metrics(self, split, metrics, args):
import json
path = os.path.join(args.output_dir, f"{split}_results.json")
with open(path, "w") as f:
json.dump(metrics, f, indent=4, sort_keys=True)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
tokenizer.pad_token = tokenizer.eos_token
config.pad_token_id = tokenizer.pad_token_id
if model_args.model_name_or_path:
if model_args.model_name_or_path == 'gpt2':
## using the following code snippet only for pre-trained gpt2 -- based on: https://discuss.huggingface.co/t/perplexity-from-fine-tuned-gpt2lmheadmodel-with-and-without-lm-head-as-a-parameter/16602
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
model = GPT2hlcLMHeadModel.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
model.resize_token_embeddings(len(tokenizer))
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warn(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warn(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
#Dataset
data_args.train_table = data_args.train_table if data_args.train_table else data_args.train_file if data_args.train_file else None
data_args.dev_table = data_args.dev_table if data_args.dev_table else data_args.validation_file if data_args.validation_file else None
if data_args.train_table is not None or data_args.dev_table is not None or data_args.test_table is not None:
if data_args.train_table is not None:
train_data, train_uncut_blocks = load_dataset(logger, tokenizer, data_args.train_table, block_size, data_args.max_train_blocks, text_column='message', user_id_column='user_id')
if data_args.dev_table is not None:
eval_data, eval_uncut_blocks = load_dataset(logger, tokenizer, data_args.dev_table, block_size, data_args.max_val_blocks, text_column='message', user_id_column='user_id')
elif data_args.test_table is not None:
eval_data, eval_uncut_blocks = load_dataset(logger, tokenizer, data_args.test_table, block_size, data_args.max_val_blocks, text_column='message', user_id_column='user_id')
else:
raise ValueError("This CLM runner requires mysql database tables as train/dev/test data sources currently!")
train_dataset = train_data if training_args.do_train else None
eval_dataset = eval_data
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval or training_args.do_predict else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
callbacks=[evalLogsCallback] if training_args.do_train else None
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
# train_result = trainer.train(resume_from_checkpoint=checkpoint)
train_result = trainer.train()
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
metrics["train_blocks_per_sample"] = train_uncut_blocks if data_args.max_train_blocks is None else min(data_args.max_train_blocks, train_uncut_blocks)
metrics["block_size"] = block_size
metrics["gpus"] = training_args.n_gpu
metrics["total_epochs"] = training_args.num_train_epochs
metrics["per_device_train_batch_size"] = training_args.per_device_train_batch_size
metrics["train_table"] = data_args.train_table
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval or training_args.do_predict:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
perplexity = math.exp(metrics["eval_loss"])
metrics["perplexity"] = perplexity
metrics["eval_blocks_per_sample"] = eval_uncut_blocks if data_args.max_val_blocks is None else min(data_args.max_val_blocks, eval_uncut_blocks)
metrics["per_device_eval_batch_size"] = training_args.per_device_eval_batch_size
metrics["is_dev"] = True if data_args.dev_table else False
metrics["eval_table"] = data_args.dev_table if data_args.dev_table else data_args.test_table
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()