This is the official repo for SOCIALITE-LLAMA: An Instruction-Tuned Model for Social Scientific Tasks
. Check out the paper here.
The model and dataset can be found at model and dataset.
We instruct tune Llama2 7B with the following default hyperparamerters:
Hyperparameter | Llama 2 7B |
---|---|
LORA_R | 8 |
LORA_ALPHA | 16 |
LORA_DROPOUT | 0.05 |
LORA_TARGET_MODULES | q_proj, v_proj |
BATCH_SIZE | 64 |
MICRO_BATCH_SIZE | 1 |
LEARNING_RATE | 1e-4 |
NUM_EPOCHS | 5 |
Instruction tuning command:
deepspeed --include localhost:0,1 finetuning.py --checkpoint /llama2-7b-hf --dataset hlab/SocialiteInstructions --OUTPUT_DIR /socialite_output_dir
For zero-shot evaluation, task_type
indicates the task we want to perform the evaluation for.
For example, the command for zero-shot evaluation for HATESPEECH
is:
CUDA_VISIBLE_DEVICES=0 python eval/zeroshot.py --checkpoint hlab/SocialiteLlama --dataset hlab/SocialiteInstructions --output_file /hate_speech_zeroshot_pred_socialite.csv --task_type HATESPEECH
The full list of task types can be found in the paper.
@inproceedings{
dey-etal-2024-socialite,
title={{SOCIALITE}-{LLAMA}: An Instruction-Tuned Model for Social Scientific Tasks},
author={Dey, Gourab and V Ganesan, Adithya and Lal, Yash Kumar and Shah, Manal and Sinha, Shreyashee and Matero, Matthew and Giorgi, Salvatore and Kulkarni, Vivek and Schwartz, H. Andrew},
address = "St. Julian’s, Malta",
booktitle={18th Conference of the European Chapter of the Association for Computational Linguistics},
year={2024},
publisher = {Association for Computational Linguistics}
}