Skip to content
forked from FederatedAI/FATE

An Industrial Grade Federated Learning Framework

License

Notifications You must be signed in to change notification settings

huocun-ant/FATE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License CodeStyle Style Build Status codecov Documentation Status Gitpod Ready-to-Code CII Best Practices

FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning.

FATE is an open source project hosted by Linux Foundation. The Technical Charter sets forth the responsibilities and procedures for technical contribution to, and oversight of, the FATE (“Federated AI Technology Enabler”) Project.

https://fate.readthedocs.io/en/latest

Getting Started

FATE can be deployed on a single node or on multiple nodes. Choose the deployment approach which matches your environment. Release version can be downloaded here.

Version >= 2.0

Standalone deployment

  • Deploying FATE on a single node via PyPI, pre-built docker images or installers. It is for simple testing purposes. Refer to this guide.

Cluster deployment

Deploying FATE to multiple nodes to achieve scalability, reliability and manageability.

Quick Start

More examples

Documentation

FATE Design

  • Architecture: Building Unified and Standardized API for Heterogeneous Computing Engines Interconnection
  • FATE Algorithm Components: Building Standardized Algorithm Components for different Scheduling Engines
  • OSX (Open Site Exchange): Building Open Platform for Cross-Site Communication Interconnection
  • FATE-Flow: Building Open and Standardized Scheduling Platform for Scheduling Interconnection
  • PipeLine Design: Building Scalable Federated DSL for Application Layer Interconnection And Providing Tools For Fast Federated Modeling
  • RoadMap
  • Paper & Conference

Related Repositories (Projects)

  • KubeFATE: An operational tool for the FATE platform using cloud native technologies such as containers and Kubernetes.
  • FATE-Flow: A multi-party secure task scheduling platform for federated learning pipeline.
  • FATE-Board: A suite of visualization tools to explore and understand federated models easily and effectively.
  • FATE-Serving: A high-performance and production-ready serving system for federated learning models.
  • FATE-Cloud: An infrastructure for building and managing industrial-grade federated learning cloud services.
  • EggRoll: A simple high-performance computing framework for (federated) machine learning.
  • AnsibleFATE: A tool to optimize and automate the configuration and deployment operations via Ansible.
  • FATE-Builder: A tool to build package and docker image for FATE and KubeFATE.
  • FATE-Client: A tool to enable fast federated modeling tasks for FATE.
  • FATE-Test: An automated testing tool for FATE, including tests and benchmark comparisons.
  • FATE-LLM : A framework to support federated learning for large language models(LLMs).

Governance

FATE-Community contains all the documents about how the community members coopearte with each other.

Getting Involved

Contributing

FATE is an inclusive and open community. We welcome developers who are interested in making FATE better! Contributions of all kinds are welcome. Please refer to the general contributing guideline of all FATE projects and the contributing guideline of each repository.

Mailing list

Join the FATE user mailing list, and stay connected with the community and learn about the latest news and information of the FATE project. Discussion and feedback of FATE project are welcome.

Bugs or feature requests

File bugs and features requests via the GitHub issues. If you need help, ask your questions via the mailing list.

Contact emails

Maintainers: FedAI-maintainers @ groups.io

Security Response Committee: FATE-security @ groups.io

Twitter

Follow us on twitter @FATEFedAI

FAQ

https://github.com/FederatedAI/FATE/wiki

License

Apache License 2.0

About

An Industrial Grade Federated Learning Framework

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 63.3%
  • Java 31.2%
  • Rust 4.1%
  • Shell 0.8%
  • Lua 0.5%
  • Makefile 0.1%