-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcodechallenge_109.py
91 lines (72 loc) · 2.84 KB
/
codechallenge_109.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
'''
Problem statement:
==================
Implement the Fibonacci sequence using linear algerbra eigenvetor and matrices.
Assume F0 = 0 and F1 = 1. Fk+1 = Fk + Fk-1
Algerbracal eigenvector:
========================
u1 = [[1,1],[1,0]]
uk+1 = [[1,1],[1,0]] * uk
i.e.
u1 = [[1,1],[1,0]]
u2 = [[1,1],[1,0]] * u1
u3 = [[1,1],[1,0]] * u2
'''
import numpy as np
import math
import unittest, os, time, HtmlTestRunner
lmbd_1 = (1 + np.sqrt(5))/2
lmbd_2 = (1 - np.sqrt(5))/2
a = np.matrix([[1,1],[1,0]])
s = np.matrix([[lmbd_1, lmbd_2],[1, 1]])
s_inv = np.matrix([[1, -lmbd_2],[-1, lmbd_1]]) * (1/np.sqrt(5))
eig_val = np.matrix([[lmbd_1, 0], [0, lmbd_2]])
u_0 = np.matrix([[1],[0]])
def eigen_vector_k(k):
return eig_val ** k
def u_k(k):
return s * eigen_vector_k(k) * s_inv * u_0
def fib(n):
f_n = u_k(n)[1,0]
return int(round(f_n))
class FiboForLarge:
def __init__(self, start_val, k):
self.start_val = start_val
self.k = k
self.k_vals = fib_next_k(start_val, k)
def __str__(self):
return str(self.k_vals)
def fib_this(self, start_val):
return int(round(start_val * 1.61803))
def fib_for_k(self, k):
return [self.k_vals.append(fib_this(self.k_vals[i])) for i in range(k)]
#
# using the golden ratio, to achieve relative accuracy on LARGE numbers in the fib sequence
#
def fib_w_goldenratio(n):
# ref: https://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form
# Computing a large Fn using the golden ratio: eigenvalue=1.61803
return int(round(n * 1.61803))
#
# given a large starting value, compute the next k values in the fibonacci sequence
#
def fib_next_k(start_val, k):
k_vals = []
k_vals.append(fib_w_goldenratio(start_val))
[k_vals.append(fib_w_goldenratio(k_vals[i])) for i in range(k)]
return k_vals
class TestFibonacci(unittest.TestCase):
def test_fib_next_k(self):
self.assertEqual(fib_w_goldenratio(218922995834555138048), 354223974950185271296)
#self.assertEqual(fib_next_k(7540113804746344448, 5), [12200130339493728256, 19740176893211037696, 31940198418522255360, 51680199247121563648])
#self.assertEqual(fib_next_k(218922995834555138048, 10), [354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296, 354223974950185271296])
if __name__ == '__main__':
if os.environ.get('UNITTEST_ONLY') != 'True':
[print(fib(i)) for i in range(100)]
print(fib_w_goldenratio(218922995834555138048))
print()
print(fib_next_k(7540113804746344448, 5))
print()
print(fib_next_k(218922995834555138048, 10))
else:
unittest.main(testRunner=HtmlTestRunner.HTMLTestRunner(output='test_reports'))