This repository has been archived by the owner on Sep 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 50
/
object_detection.py
37 lines (33 loc) · 1.6 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tensorflow as tf
import numpy as np
from utils import label_map_util
from utils import visualization_utils as vis_util
from scipy.misc import imread, imsave
import os
MODEL_NAME = 'ssdlite'
PATH_TO_CKPT = os.path.join(MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_LABELS = 'mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
object_sess = tf.InteractiveSession()
object_sess.run(tf.global_variables_initializer())
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_object(img,sess=object_sess):
image_np_expanded = np.expand_dims(img, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
return (boxes, scores, classes, num_detections)