-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
169 lines (138 loc) · 6.26 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import sys
import torch
import torch.nn.functional as F
import data
parser = argparse.ArgumentParser(description='PyTorch PTB Language Model')
# Model parameters.
parser.add_argument('--data', type=str, default='./data/penn',
help='location of the data corpus')
parser.add_argument('--checkpoint', type=str, default='./model.pt',
help='model checkpoint to use')
parser.add_argument('--outf', type=str, default='output.txt',
help='output file for generated text')
parser.add_argument('--words', type=int, default='1000',
help='number of words to generate')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature - higher will increase diversity')
parser.add_argument('--log-interval', type=int, default=100,
help='reporting interval')
args = parser.parse_args()
def model_save(fn):
with open(fn, 'wb') as f:
#torch.save([model, criterion, optimizer], f)
torch.save([model, criterion], f)
def model_load(fn):
global model, criterion, optimizer
with open(fn, 'rb') as f:
#model, criterion, optimizer = torch.load(f)
model, criterion = torch.load(f)
#model.load_state_dict(m.state_dict(), strict=False)
#del m
model, criterion = torch.load(args.checkpoint)
model.eval()
if args.cuda:
model.cuda()
model.float()
else:
model.cpu()
import os
import hashlib
fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn)
else:
print('Producing dataset...')
corpus = data.Corpus(args.data)
torch.save(corpus, fn)
dictionary = corpus.dictionary
del corpus
ntokens = len(dictionary)
hidden = None
mems = None
text = sys.stdin.read()
#import youtokentome as yttm
#m = 'data/wpwikitext-103/wt103.yttm'
#bpe = yttm.BPE(model=m)
#text = ' '.join(bpe.encode(text, output_type=yttm.OutputType.SUBWORD))
#if type(text) == str:
# text = text.encode('utf8')
#text = [str(c) if c != ord('\n') else '<eos>' for c in text]
text = [w for w in text.replace('\n', ' <eos> ').split() if w]
maxlen = (2 * 1400) - 1
maxlen = model.num_max_positions
text = text[-maxlen:]
orig = ' '.join(w if w != '<eos>' else '\n' for w in text)
print(text)
text = [dictionary.word2idx[c] for c in text]
print(text)
input = torch.rand(1, 1).mul(ntokens).long()
print(input.shape)
input = torch.Tensor(text).view(-1, 1).long()
if args.cuda:
input = input.cuda()
logits, hidden, mems = model(input[:-1, :], hidden, mems=mems, return_h=False)
input = input[-1:, :]
# TODO: We lose a token here as we predict one, update the memory, but don't add it to our generated text
def produce_vocab_logits(head_weight, head_bias, hiddens):
head_res = torch.nn.functional.linear(hiddens, head_weight, bias=head_bias)
#softmaxed_head_res = torch.nn.functional.log_softmax(head_res, dim=-1)
#softmaxed_head_res = F.softmax(head_res, dim=-1)
return head_res
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
with open(args.outf, 'w') as outf:
#outf.write(str(orig.decode('utf8')))
outf.write(orig)
outf.write('||||')
for i in range(args.words):
with torch.no_grad():
logits, hidden, mems = model(input, hidden, mems=mems, return_h=False)
# TODO: What if we want to start with no history?
#magic_mem = []
#for ma, mb in zip(mems, new_mems):
# magic_mem.append(torch.cat([ma, mb], dim=0)[-maxlen:])
#mems = magic_mem
output = produce_vocab_logits(model.decoder.weight, model.decoder.bias, logits) / args.temperature
#output = top_k_top_p_filtering(output.view(-1), top_k=100).view(*output.shape)
output = top_k_top_p_filtering(output.view(-1), top_p=0.98).view(*output.shape)
word_weights = F.softmax(output, dim=-1).squeeze()
#word_weights = output.squeeze().data.div(args.temperature).exp().cpu()
word_idx = torch.multinomial(word_weights, num_samples=1)[0]
input.data.fill_(word_idx)
word = dictionary.idx2word[word_idx]
#outf.write(word + ('\n' if i % 20 == 19 else ' '))
#outf.write(chr(int(word)) if word != '<eos>' else '\n')
outf.write(word + ' ' if word != '<eos>' else '\n')
if i % args.log_interval == 0:
print('| Generated {}/{} words'.format(i, args.words))
print('|| Memory: {}'.format(None if mems is None else mems[0].shape))