forked from ketch/implicit-advection-positivity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
positivity.tex
1837 lines (1674 loc) · 102 KB
/
positivity.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\newif\ifjournal
\journaltrue
\ifjournal
\documentclass[a4paper]{article}
%% Language and font encodings
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{csquotes}
%% Sets page size and margins
\usepackage[a4paper,%
top=3cm, bottom=3cm ,left=3cm, right=2.9cm,%
marginparwidth=2cm, footskip=2.0cm]%
{geometry}
%% Useful packages
\usepackage[
style=numeric-comp,
hyperref=true,
backend=biber,
doi=false,
url=false,
isbn=false,
backref=false,
giveninits=true,
sorting=nyt,
maxcitenames=3,
maxbibnames=100,
block=none]{biblatex}
\usepackage[colorlinks=true, allcolors=blue]{hyperref}
%% Commands for hyperlinking bibliography
% Author name all caps
%\renewcommand{\mkbibnamefirst}[1]{\MakeUppercase{#1}}
%\renewcommand{\mkbibnamelast}[1]{\MakeUppercase{#1}}
% Changing first/last name listing
\DeclareNameAlias{default}{family-given}
% Making title of reference hyperlinked
\newbibmacro*{string+doiurlisbn}[1]{
\iffieldundef{doi}{
\iffieldundef{url}{
\iffieldundef{isbn}{
\iffieldundef{issn}{#1}
{\href{http://books.google.com/books?vid=ISSN\thefield{issn}}{#1}}
}
{\href{http://books.google.com/books?vid=ISBN\thefield{isbn}}{#1}}
}
{\href{\thefield{url}}{#1}}
}
{\href{http://dx.doi.org/\thefield{doi}}{#1}}
}
\DeclareFieldFormat*{title}{\usebibmacro{string+doiurlisbn}{#1\isdot}}
% Adding commas for punctuation
\renewcommand*{\newunitpunct}{\addcomma\space}
% Adding commas after journal
\DeclareFieldFormat{journaltitle}{\mkbibemph{#1}\newunitpunct}
% Suppress "In:"
\renewbibmacro{in:}{}
% Suppress number field
\AtEveryBibitem{\clearfield{number}}
% Use full journal field (FJOURNAL) instead of JOURNAL
\DeclareSourcemap{
\maps[datatype=bibtex]{
\map[overwrite=true]{
\step[fieldsource=fjournal]
\step[fieldset=journal, origfieldval]
}
}
}
% Use the bib file
\addbibresource{references.bib}
\title{Positivity preservation of implicit discretizations of the advection equation}
\author{Yiannis Hadjimichael\thanks{{\texttt{hadjimichael@wias-berlin.de}}, MTA-ELTE Numerical
Analysis and Large Networks Research Group, E\"otv\"os Lor\'and University, P\'azm\'any P\'eter
s\'et\'any 1/C, H-1117, Budapest, Hungary, and Weierstrass Institute (WIAS), Mohrenstra{\ss}e 39,
10117, Berlin, Germany.}
\and David I. Ketcheson\thanks{{\texttt{david.ketcheson@kaust.edu.sa}}, King Abdullah University of
Science and Technology (KAUST), Computer Electrical and Mathematical Science and Engineering Division
(CEMSE), Thuwal, 23955-6900, Saudi Arabia.}
\and Lajos L\'oczi\thanks{{\texttt{LLoczi@inf.elte.hu}}, Department of Numerical Analysis, E\"otv\"os
Lor\'and University, and Department of Differential Equations, Budapest University of Technology and
Economics, Hungary.}}
\else
\documentclass[a4paper,12pt,twoside,english]{article}
%\documentclass[a4paper,12pt,twoside]{amsart}
\usepackage{wiaspreprint}
% The layout is generated by means of the geometry package
% (loaded by wiaspreprint).
% Text width and height can be changed while retaining a symmectrical
% layout with the following command:
% \geometry{hcentering,textwidth=+++BlattBreite+++,textheight=+++BlattHoehe+++}
\geometry{marginparwidth=2cm}
% Uncomment the following for a revised version of this paper.
%\pagefootright{Berlin, October 28, 2016/rev. March 9, 2017}
% Uncomment the following if there is no DOI for this paper (yet).
\pagefootleft{WIAS Preprint No. +++preprint number+++}
\setlength{\emergencystretch}{1pt}
\author[Y. Hadjimichael, D. I. Ketcheson, L. L\'oczi]{%
%\nofnmark{} % no footnote mark; please call before \footnote{}
Yiannis Hadjimichael\footnote{Weierstrass Institute, \\ Mohrenstr. 39, \\ 10117 Berlin, \\ Germany \\
E-Mail: yiannis.hadjimichael@wias-berlin.de},
David I. Ketcheson\footnote{ Computer, Electrical and Mathematical Science \\ and Engineering Division
(CEMSE), \\ King Abdullah University of Science \\ and Technology (KAUST), \\ Thuwal 23955-6900, \\
Saudi Arabia \\
E-Mail: david.ketcheson@kaust.edu.sa},
Lajos L\'oczi\footnote{Department of Numerical Analysis \\ E\"otv\"os Lor\'and University, and \\
Department of Differential Equations \\
Budapest University of Technology and Economics \\ Hungary \\
E-Mail: LLoczi@inf.elte.hu}
%\addmark{,}{n} % seperator "," mark relating to already existing mark
}
\title[Positivity preservation of implicit discretizations of the advection equation]
{Positivity preservation of implicit discretizations of the advection equation}
% in English: lowercase; start with capital letter after colon or dash; short title for page headings
\nopreprint{+++preprint number+++} % preprint number
\nopreyear{2021} % preprint year
\selectlanguage{english} % do not change; important for date format
%\date{+++Datum+++} % fix date, e.g. February 22, 2017
\subjclass[2020]{65M12, 65L07, 65L06, 35R09, 92D30} % Math. Subject Classif.
%\pacs[2008]{} % Physics Astronomy Classif., if any
\keywords{Epidemic models, SIR model, integro-differential equations, strong stability preservation}
\thanks{The Application-domain Specific Highly Reliable IT Solutions project has been implemented
with the support provided from the National Research, Development and Innovation Fund of Hungary,
financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme.
This work was supported by the King Abdullah University of Science and Technology (KAUST), 4700
Thuwal, 23955-6900, Saudi Arabia, and by the Leibniz Competition}
% acknowledgements; period is set automatically!
%% amsart only! abstract before maketitle
%\begin{abstract}Abstract\ldots\end{abstract}
\makeatletter
% how to suppress “Underfull \vbox (badness 10000) … while \output is active”?
% https://tex.stackexchange.com/questions/62296/how-to-suppress-underfull
\def\@textbottom{\vskip \z@ \@plus 32pt}
\let\@texttop\relax
\fi
%% Useful packages
\usepackage{amsmath,amsthm,amssymb}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{cleveref}
\usepackage{enumitem}
\usepackage[colorinlistoftodos]{todonotes}
%% Graphics path
\graphicspath{{figures/}}
%% New theorems
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{remark}{Remark}
\newtheorem{example}{Example}
\newtheorem{corollary}{Corollary}
\newtheorem{proposition}{Proposition}
%% New commands
\newcommand{\dt}{\Delta t}
\newcommand{\dx}{\Delta x}
\newcommand{\te}{\theta}
\newcommand{\nul}{\nu_L(k,\theta)}
\newcommand{\nur}{\nu_R(k,\theta)}
\newcommand{\yl}{y_L(k,\theta)}
\newcommand{\yr}{y_R(k)}
\newcommand{\nplus}{\mathbb{N}^+}
\newcommand{\rr}{\mathbb{R}}
\newcommand{\Por}{P_{R,k}(y)}
\newcommand{\Pol}{P_{L,k,\te}(y)}
\newcommand{\cP}{{\cal{P}}}
\newcommand{\cD}{{\cal{D}}}
\newcommand{\cF}{{\cal{F}}}
\newcommand{\cS}{{\cal{S}}}
\newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)}
\newcommand\blfootnote[1]{%
\begingroup
\renewcommand\thefootnote{}\footnote{#1}%
\addtocounter{footnote}{-1}%
\endgroup
}
\hbadness=99999
\begin{document}
\maketitle
\begin{abstract}
We analyze, from the viewpoint of positivity
preservation, certain discretizations of a fundamental partial differential
equation, the one-dimensional advection equation with periodic boundary
condition. The full discretization is obtained by coupling a finite difference spatial semi-discretization
(the second- and some higher-order centered difference schemes, or the Fourier spectral collocation method)
with an arbitrary $\te$-method in time
(including the forward and backward Euler methods, and a second-order method by
choosing $\te\in [0,1]$ suitably).
The full discretization generates a
two-parameter family of circulant matrices $M\in\mathbb{R}^{m\times m}$,
where each matrix entry is a
rational function in $\te$ and $\nu$. Here, $\nu$ denotes the CFL number,
being proportional to the ratio between the temporal and spatial discretization
step sizes. The entrywise non-negativity of the matrix $M$---which is
equivalent to the positivity preservation of the fully discrete
scheme---is investigated via discrete Fourier analysis and also by solving some low-order parametric
linear recursions. We find that positivity preservation of the fully discrete system is impossible if the number of spatial grid points $m$ is even. However, it turns out that positivity preservation of the fully discrete system is recovered for \emph{odd} values of $m$
provided that $\te\ge 1/2$ and $\nu$ are chosen suitably. % \emph{large}.
%bounded by two positive constants (the
%upper bound can sometimes be $+\infty$). The interplay between $m$, $\te$ and
%$\nu$ governing non-negativity of the matrix $M$ is explicitly described in
%terms of roots of certain sparse polynomials.
These results are interesting since the systems of ordinary differential equations obtained via the spatial semi-discretizations studied are \emph{not} positivity preserving.
%Finally, some connections with
%non-negative inverse eigenvalue problems are pointed out.
\end{abstract}
\blfootnote{The Application-domain Specific Highly Reliable IT Solutions project has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.
This work was supported by the King Abdullah University of Science and Technology (KAUST), 4700
Thuwal, 23955-6900, Saudi Arabia, and by the Leibniz Competition.}
\section{Background and motivation}
In this work, we investigate the positivity of some discretizations of the advection equation
with periodic boundary condition
\begin{align}\label{advection}
\begin{split}
U_t (x,t) &= a U_x(x,t), \qquad x\in[0,1], t>0, \\
U(x,0) &= U_0(x), \\
U(0,t) &= U(1,t),
\end{split}
\end{align}
where $U:\mathbb{R}\times [0,+\infty)\to\mathbb{R}$ is the unknown function, $U_0:\mathbb{R}\to\mathbb{R}$ is a given differentiable initial function, and $a>0$ is a constant.
The exact solution of the Cauchy problem \eqref{advection}, given by $U(x,t) =
U_0(\{x+a t\})$ (where $\{\cdot\}$ denotes the fractional part), is positivity preserving; i.e.
\begin{align} \label{implies-positivity}
%\[
\forall x\in[0,1], \forall t>0\quad\quad U_0(x) \ge 0 \implies U(x,t) \ge 0.
%\]
\end{align}
Positivity is often important in this context, since $U$ may represent a
concentration or density that cannot be negative.
\begin{remark}
Herein the term {\emph{positivity}} is always meant in the weak sense;
i.e.~it means {\emph{non-negativity}}.
\end{remark}
Finite difference spatial semi-discretization of \eqref{advection} on a uniform grid $\{\dx,2\dx,\ldots, m\dx\}\subset [0,1]$
with mesh spacing $\dx>0$ and $m\dx=1$ yields a system of ordinary differential equations
\begin{align} \label{semi-discrete}
u'(t) & = \frac{a}{\dx}Lu(t),
\end{align}
where $u:\mathbb{R}\to\mathbb{R}^m$, $L\in\mathbb{R}^{m\times m}$ is a circulant matrix \cite[Section 5.16]{matmat}, and $m \in\mathbb{N}^+$ is the number of grid points (the points $x=0$ and $x=1$ are identified due to the periodic boundary condition).
If one uses an upwind spatial discretization
%\begin{subequations}
%\label{upwind1}
%\begin{align}
% L_{i,i} & \coloneqq -1,\quad\quad L_{i,i+1} \coloneqq 1 \ \ \ \ 1\le i < m \\
% L_{m,1} & \coloneqq 1
%\end{align}
%\end{subequations}
\begin{equation}\label{upwind1}
L=\left(
\begin{array}{cccccc}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
0 & 0 & -1 & \ddots & 0 & 0\\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & -1 & 1 \\
1 & 0 & \cdots & 0 & 0 & -1 \\
\end{array}
\right),
\end{equation}
then the exact solution of \eqref{semi-discrete} is also positivity
preserving. Moreover, a corresponding full discretization will be positivity preserving too,
under an appropriate time step size restriction $0<\dt\le\dt_0$
if, for example, the forward (explicit) Euler method or any strong stability preserving
method \cite{SSPbook} is used in time, see, e.g.~\cite{posconv}.
Positivity-preserving methods for transport equations are typically based
on low-order upwind-biased spatial discretizations like that above, or involve
nonlinear limiters (or both).
Here we instead consider the positivity of linear higher-order centered discretizations.
A second-order scheme is obtained with the centered difference discretization
\begin{equation}\label{centered-difference}
L=\left(
\begin{array}{cccccc}
0 & \frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2} & \cdots & 0 & 0 \\
0 & -\frac{1}{2} & 0 & \ddots & 0 & 0\\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} & 0 \\
\end{array}
\right).
\end{equation}
However, this spatial semi-discretization is not positivity preserving, since the
matrix $L$ has at least one negative off-diagonal entry \cite[Chapter I,
Theorem 7.2]{hundsdorferverwer}.
This implies that any consistent full discretization based on \eqref{centered-difference}
must fail to preserve positivity under sufficiently small step sizes $\dt>0$.
Indeed, a full discretization based on the scheme \eqref{centered-difference}
and forward Euler in time is not positivity preserving for any step size $\dt>0$.
On the other hand, interestingly, using \eqref{centered-difference} with backward (implicit)
Euler time integration, one
%generally
observes positivity preservation
under \emph{large} enough time step sizes provided that the parity of the number of spatial grid points is \emph{odd}. To investigate the differences between the behavior
of the forward and backward Euler methods, we will study the $\theta$-method
\cite[Chapter IV.3]{hairerwanner} as time discretization applied to \eqref{semi-discrete}
\begin{align}\label{firsttheta}
u^{n+1} = u^n + \frac{a\dt}{\dx}((1-\theta)Lu^n + \theta Lu^{n+1}).
\end{align}
For $\te\in[0,1]$, the $\theta$-family includes both Euler methods as limiting cases: the forward Euler method for $\te=0$, the backward
Euler method for $\te=1$, and the only second-order $\te$-method for $\te=1/2$;
any $\theta$-method with $\theta\in(0,1]$ is implicit.
\begin{remark}
As is customary in the context of space-time discretizations of partial differential equations, superscripts of $u$ in \eqref{firsttheta} (and later in this work) are not exponents but denote time discretization steps.
\end{remark}
\begin{remark}
Similarly to \eqref{implies-positivity}, the semi-discrete system \eqref{semi-discrete} and the fully discrete system \eqref{firsttheta} is said to be \emph{positivity preserving}, if for \textbf{any} componentwise non-negative vector of initial condition
\begin{itemize}
\item $u(0)$, the solution $u(t)$ of \eqref{semi-discrete} stays componentwise non-negative $\forall t>0$
\item $u^0$, the solution $u^n$ of \eqref{firsttheta} stays componentwise non-negative $\forall n\in\mathbb{N}^+$,
\end{itemize}
respectively.
\end{remark}
The motivation for this work is not to develop new positivity preserving
methods, but to study the positivity of some of fundamental discretizations
such as the second-order centered difference method \eqref{centered-difference} and the
$\theta$-method \eqref{firsttheta}. As we will see, the combination of
these methods does not preserve positivity in general, nor in the limit
of small time step size, so it is not typically recommended in practice.
Nevertheless, this study may both shed light on the
behavior of more complicated methods used in practice and provide tools
that can be used to study the positivity of those methods.
In the later sections of the paper, we combine higher-order methods in space with the $\theta$-method in time, as a next step in this direction.
%Thus our main focus is on a discretization of \eqref{advection} that is
%centered in space and backward in time. For various reasons, this
%is not a method that is recommended in practice, but it is an application
%of some of the most fundamental discretizations to one of the most fundamental
%partial differential equations (PDEs), so its behavior seems to be of
%independent interest.
\subsection{Structure of the paper and notation}
In Section~\ref{sectiondiscFourier}, we first characterize
positivity preservation of full discretizations of \eqref{advection} resulting from
finite difference spatial and one-step time discretizations. Then, in Section~\ref{sectioncentered}, we study positivity of the second-order centered differences in space
combined with the $\theta$-method in
time, using discrete Fourier
analysis. We also point out some connections with structured non-negative inverse eigenvalue problems. In Section~\ref{section3}, we study this particular full discretization in more detail.
In Section \ref{explsect}, by setting up and solving certain parametric linear recursions, we derive explicit, non-trigonometric formulae for the entries of the full discretization matrix $M$. Then, in Section \ref{nonnegsect}, we use these formulae to provide precise results on the non-negativity of $M$ in terms of roots of some sparse polynomials.
In Section \ref{otherdisc}, we discuss some observations and results regarding
higher-order spatial discretizations, including high-order centered differences
(in Section~\ref{highercentered}) and spectral collocation methods (in Section~\ref{spectrcoll}).
We summarize our findings in Section \ref{conclusions}.\\
%\subsection{Notation}
Throughout the paper, the set of positive integers is denoted by $\nplus$, the complex imaginary unit is $\imath$, the identity matrix is $I\in\rr^{m\times m}$, and to emphasize the dimensions of a matrix, we will sometimes write, for example, $L_{m\times m}$.
The symbol $M\ge 0$ means that $M_{i,j}\ge 0$ for every entry $1\le i, j\le m$ of the matrix $M\in\mathbb{R}^{m\times m}$. The positive integer $m$ is the number of spatial grid points within the interval $[0,1]$, and the matrices $L$ and $M$ are the matrices corresponding to the spatial and the full discretizations, respectively. The three key parameters in our investigations will be $m$, $\theta\in [0,1]$ and $\nu>0$ (see \eqref{firsttheta} and \eqref{nudef}).
The computations in this work have been carried out by using Wolfram \textit{Mathematica} version 11.
%This result is rather unusual, since in numerical analysis one typically makes
%statements about small enough mesh parameters, and parity is rarely important.
%We see that the full discretization can be positivity preserving only if $m$ is
%odd. Furthermore, we see that from the point of view of positivity preservation,
%it is better to use larger values of both $\dt$ and $\dx$.
%\textbf{Y.H.: In my opinion we could avoid any discussion about $\dt$ or $\dx$ and say that for large
%enough CFL numbers in theorem 1, the matrix $M$ is non-negative.
%In general for hyperbolic problems $\dt$ is proportional to $\dx$.}
%\textbf{D.K.: Since we reference $m$ we are discussing $\dx$ anyway, and with $m$ fixed then
%$\nu$ and $\dt$ vary proportionally to one another. I prefer using $\dt$ since then both
%ODE and PDE readers will have a good idea of what we mean.}
%WE CAN emphasize the following again: positivity preservation of the fully discrete numerical solution
%$\Longleftrightarrow M\ge 0$
%MAYBE WE CAN REUSE THESE SENTENCES:
%The exact solution of the resulting semi-discrete
%system \eqref{semi-discrete} is not positive invariant, so (given an appropriate
%positive initial condition) any consistent time discretization will yield
%negative values for small enough time steps. Here we investigate whether
%it is possible to ensure positive invariance for large time steps.\\
\section{Discrete Fourier analysis}\label{sectiondiscFourier}
From here on, we consider the problem \eqref{advection} on the domain $x\in[0,1]$
with periodic boundary condition $U(0,t)=U(1,t)$. Finite difference discretization
in space with step size $\dx$ leads to \eqref{semi-discrete} with $u_j\approx u(j\dx)$ for $1\le j\le m$.
The circulant matrix $L\in\mathbb{R}^{m\times m}$ has the eigendecomposition
%\begin{align}
\begin{align}\label{eigen}
L = \cF \Lambda \cF^*,
\end{align}
%\end{align}
where the (unitary) matrix of normalized eigenvectors $\cF$ has entries
\begin{align}\label{eigenvectrors}
f_{j,\ell} \coloneqq \frac{1}{\sqrt{m}}\exp(\imath (j-1) \xi_\ell) \quad\quad (1 \le j, \ell \le m),
\end{align}
and $\Lambda$ is the diagonal matrix of eigenvalues $\lambda_\ell$, which depends on the
particular finite difference method chosen. Here $\xi_\ell$ are evenly spaced angles
%\begin{align}
\begin{equation}\label{xildef}
\xi_\ell \coloneqq \frac{2\pi(\ell-1)}{m} \quad\quad (1 \le \ell \le m),
\end{equation}
such that $\exp(\imath\xi_\ell)$ are the $m^\text{th}$ roots of unity.
%\end{align}
Applying a one-step time
discretization with step size $\dt$ and stability function $R:\mathbb{C}\to\mathbb{C}$ to \eqref{semi-discrete} leads to
the iteration
\begin{align}\label{M}
u^{n+1} & = M u^n,
\end{align}
where
\begin{equation}\label{Mdualdef}
M:=R(\nu L)=\cF R(\nu \Lambda) \cF^*,
\end{equation}
and
\begin{equation}\label{nudef}
\nu:=a\frac{\dt}{\dx}>0
\end{equation}
is the CFL number.
Then it is easily seen that
\[
\boxed{\text{positivity preservation of the fully discrete numerical solution}\quad \Longleftrightarrow \quad M\ge 0.}
\]
For one-step methods, $R$ is a rational function, and products and inverses of circulant matrices are also circulant \cite[Fact 5.16.7]{matmat}, so
$M$ is also a real, circulant matrix.
Thus it is defined completely by the entries of its first row, which
are given by
\begin{align} \label{M-entries}
M_{1,j} & = \frac{1}{m} \sum_{\ell=1}^m R(\nu\lambda_\ell) \exp(-\imath(j-1)\xi_\ell) \quad\quad (1\le j\le m).
\end{align}
\subsection{Second-order centered discretization in space, \texorpdfstring{$\theta$}{}-method in time}\label{sectioncentered}
In what follows we assume $3\le m\in\nplus$. Consider the case of a 3-point centered difference approximation in space (having order 2):
%\begin{align}
\[
U_x\Big|_{x=x_j} \approx \frac{u_{j+1}-u_{j-1}}{2\dx},
\]
%\end{align}
so that $L\in\mathbb{R}^{m\times m}$ is a circulant matrix with entries $(-1/2, 0, 1/2)$ on the central
three diagonals:
\begin{equation}\label{Ldef}
L:=\left(
\begin{array}{cccccc}
0 & \frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2} & \cdots & 0 & 0 \\
0 & -\frac{1}{2} & 0 & \ddots & 0 & 0\\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} & 0 \\
\end{array}
\right),
\end{equation}
that is,
\begin{subequations}
%\label{centered-difference}
\begin{align}
L_{i,i-1} & \coloneqq -\frac{1}{2},\quad\quad L_{i,i+1} \coloneqq \frac{1}{2} \\
L_{1,m} & \coloneqq -\frac{1}{2}, \quad \quad L_{m,1} \coloneqq \frac{1}{2}.
\end{align}
\end{subequations}
It is known that the eigenvalues of $L$ are
\begin{equation}\label{Leigenvalues}
\lambda_\ell=\imath \sin(\xi_\ell)\quad (1\le\ell\le m).
\end{equation}
%Let us consider first the backward Euler method.
%The eigenvalues for this semi-discretization are $\lambda_j = \imath\sin\xi_j$.
%If we use the backward Euler method in time, we have $R(z) = (1-z)^{-1}$, so
%\eqref{M-entries} gives the entries of $M$ as
%\begin{align} \label{firstrow}
% M_{1,j} & = \frac{1}{m} \sum_{k=1}^m \frac{\exp\left(-i(j-1)\xi_k\right)}{1-\nu i \sin\xi_k}.
%\end{align}
%If $m$ is even, then these entries cannot all be positive.
%
%\begin{lemma}
% If $m$ is even, then $M_{1,m} < 0$.
%\end{lemma}
%\begin{proof}
% From \eqref{firstrow} we have
% \begin{align} \label{M12}
% M_{1,m} & = \frac{1}{m} \sum_{k=1}^m \frac{ \exp(-i(m-1)\xi_k)}{1-\nu i \sin\xi_k}
% = \frac{1}{m} \sum_{k=1}^m \frac{ \exp(i\xi_k)}{1-\nu i \sin\xi_k}
% = \frac{1}{m} \sum_{k=1}^m \frac{\cos \xi_k - \nu \sin^2 \xi_k}{1+\nu^2 \sin^2 \xi_k}.
% \end{align}
% The expression on the right is obtained by multiplying by the complex
% conjugate of the denominator and taking the real part (since $M$ is a real matrix).
% Due to symmetry, when $m$ is even,
% \begin{align*}
% \sum_{k=1}^m \frac{\cos \xi_k}{1+\nu^2\sin^2\xi_k} = \sum_{k=1}^{m/2} \frac{\cos \xi_k + \cos(\xi_k+\pi)}{1+\nu^2\sin^2\xi_k} = 0.
% \end{align*}
% Thus
% \begin{align*}
% M_{1,m} & = \frac{1}{m} \sum_{k=1}^m \frac{- \nu \sin^2 \xi_k}{1+\nu^2 \sin^2 \xi_k} < 0.
% \end{align*}
%\end{proof}
%Using similar expressions, it can in fact be shown that, for $m$ even, we have
%$M_{1,2j}<0$ for $1\le j \le m/4$; in other words, approximately one fourth of
%the entries of $M$ are negative, no matter the value of $\nu$. All of these
%negative entries tend to zero as $\nu \to \infty$.
%
%Meanwhile, if $m$ is odd...
Now we consider the $\theta$-method \cite[Chapter IV.3]{hairerwanner} in time, whose stability function %$R$
is
\begin{align}\label{R}
R(z) \coloneqq \frac{1+(1-\theta)z}{1-\theta z},
\end{align}
so with the second-order centered difference in space we get from \eqref{M-entries} for $1\le j\le m$ that
the entries of the full discretization matrix are
\begin{equation}\label{matrix_entries}
\begin{split}
M_{1,j} &= \frac{1}{m} \sum_{\ell=1}^m \frac{1+(1-\theta)\nu \imath\sin(\xi_\ell)}
{1-\theta\nu \imath\sin(\xi_\ell)}\exp\left(-\imath(j-1)\xi_\ell\right) \\
&= \frac{1}{m} \sum_{\ell=1}^{m} \frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)\right)
\cos((j-1)\xi_\ell) + \nu \sin(\xi_\ell)\sin((j-1)\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)} \\
&\quad - \frac{\imath}{m} \sum_{\ell=1}^{m} \frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)
\right)\sin((j-1)\xi_\ell) - \nu \sin(\xi_\ell)\cos((j-1)\xi_\ell)}
{1+\theta^2\nu^2 \sin^2(\xi_\ell)}.
\end{split}
\end{equation}
Note that the angles $\{(j-1)\xi_\ell\}_{\ell=1}^m$ are symmetric about the $x$-axis if $m$ is odd, and
also if $m$ is even and $j$ is odd.
If both $m$ and $j$ are even, then the angles are symmetric about the origin.
Therefore, we have that
\begin{align*}
\sum_{\ell=1}^{m} \sin((j-1)\xi_\ell) = 0 \qquad \text{and} \qquad
\sum_{\ell=1}^{m} \sin(\xi_\ell)\cos((j-1)\xi_\ell) = 0,
\end{align*}
for all $1\le j\le m$ and for any value of $m$.
Moreover the factors
$\frac{1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}$
and $\frac{\nu}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}$ in \eqref{matrix_entries} keep this symmetry.
Thus, the imaginary part of \eqref{matrix_entries} vanishes, yielding $M_{1,j}\in\mathbb{R}$ for all $j$,
as expected.
So for $1\le j\le m$ we get
%Since $ M_{1,j}\in\mathbb{R}$, the imaginary part of the above sum vanishes, so for $1\le j\le m$ we also
%have
%\begin{align}\label{firstrow-theta}
\[
M_{1,j} = \frac{1}{m} \sum_{\ell=1}^{m} \frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)\right)
\cos((j-1)\xi_\ell) + \nu \sin(\xi_\ell)\sin((j-1)\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}.
\]
%\end{align}
We will also make use of the identities
\begin{align} \label{angle-identities}
\cos((m-1)\xi_\ell) & = \cos(\xi_\ell), & \sin((m-1)\xi_\ell) & = -\sin(\xi_\ell).
\end{align}
This leads to the following expressions for the first, second and last entries of the first
row of $M$:
\begin{align*}
M_{1,1} & = \frac{1}{m} \sum_{\ell=1}^m \frac{1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)}
{1+\theta^2\nu^2\sin^2(\xi_\ell)}, \\
M_{1,2} & = \frac{1}{m} \sum_{\ell=1}^{m} \frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)\right)
\cos(\xi_\ell) + \nu \sin^2(\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}, \\
M_{1,m} & = \frac{1}{m} \sum_{\ell=1}^m \frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)\right)
\cos(\xi_\ell) - \nu \sin^2 (\xi_\ell)}{1+\theta^2\nu^2 \sin^2 (\xi_\ell)}.
\end{align*}
These entries will have a special role in the forthcoming analysis.
We distinguish two cases.
\begin{description}[style=unboxed,leftmargin=0cm]
\item [{Case 1:} $m$ is {even}.]
\item \noindent By using similar symmetry arguments as before, we conclude that for {even} $m=2k\ge 4$
the entries of matrix $M$ are given by
\begin{align*}
M_{1,j} = \begin{cases}
\displaystyle
\frac{1}{m} \sum_{\ell=1}^{m}\frac{\left(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)
\right)\cos((j-1)\xi_\ell)}{1+\theta^2\nu^2\sin^2(\xi_\ell)}, &\mbox{if } j
\text{ is odd}, \\[20pt]
\displaystyle
\frac{1}{m} \sum_{\ell=1}^{m} \frac{\nu \sin(\xi_\ell)\sin((j-1)\xi_\ell)}
{1+\theta^2\nu^2 \sin^2 (\xi_\ell)}, &\mbox{if } j \text{ is even}.
\end{cases}
\end{align*}
Considering the above expression for $j = m$ we have
\begin{align*}
M_{1,m} & = \frac{1}{m} \sum_{\ell=1}^{m} \frac{- \nu \sin^2 (\xi_\ell)}{1+\theta^2\nu^2 \sin^2 (\xi_\ell)} < 0.
\end{align*}
%$\bullet$ For \emph{even} $m=2k\ge 4$, consider the above expression for $M_{1,m}$. The sum over the first term in the numerator vanishes due to symmetry, and $\sin(\xi_1)=0$, so we have
%\begin{align*}
% M_{1,m} & = \frac{1}{m} \sum_{\ell=2}^{m} \frac{- \nu \sin^2 (\xi_\ell)}{1+\theta^2\nu^2 \sin^2 (\xi_\ell)} < 0.
%\end{align*}
Thus the discretization using second-order centered differences in space and the $\theta$-method in time cannot preserve positivity when $m$ is even, regardless of the
values of $\theta\in[0,1]$ and $\nu>0$.
We can arrive at the same conclusion by observing that
for any $m=2k\ge 4$ we have $M_{1,2}=-M_{1,m}$, so that one of
these (non-zero) entries must always be negative.
%\begin{remark}
%By using similar symmetry arguments, one can prove that for any $m=2k\ge 4$ we have
%$M_{1,2}=-M_{1,m}$, which also shows that $M\ge 0$ is impossible for $\te\in[0,1]$ and $\nu>0$.
%\end{remark}
\item [{Case 2:} $m$ is {odd}.]
\item \noindent Let us now consider the case of {odd} $m=2k+1\ge 3$. Then $\sin(\xi_\ell)\ne0$ for
$2\le\ell\le m$.
Writing
\ifjournal
\begin{align*}
M_{1,1} & = \frac{1}{m} \left(1 + \sum_{\ell=2}^{m} \frac{1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)}
{1+\theta^2\nu^2\sin^2(\xi_\ell)}\right) \\
M_{1,j} & = \frac{1}{m} \left(1 + \sum_{\ell=2}^{m} \frac{(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell))
\cos((j-1)\xi_\ell) + \nu \sin(\xi_\ell)\sin((j-1)\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}
\right) \quad (j\ge 2),
\end{align*}
\else
\begin{align*}
M_{1,1} & = \frac{1}{m} \left(1 + \sum_{\ell=2}^{m} \frac{1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)}
{1+\theta^2\nu^2\sin^2(\xi_\ell)}\right) \\
M_{1,j} & = \frac{1}{m} \left(1 + \sum_{\ell=2}^{m} \frac{(1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell))
\cos((j-1)\xi_\ell) + \nu \sin(\xi_\ell)\sin((j-1)\xi_\ell)}{1+\theta^2\nu^2 \sin^2(\xi_\ell)}
\right) \\ && \hspace*{-30pt} (j \ge 2).
\end{align*}
\fi
and taking $\nu \to +\infty$ with $m$ and $\te\in(0,1]$ fixed, we find that
\ifjournal
\begin{align*}
M_{1,1}^\infty \coloneqq \lim_{\nu \to +\infty} M_{1,1} & = \frac{1}{m} \left(1 - \sum_{\ell=2}^m \frac{1-\theta}{\theta}\right) = 1-\frac{m-1}{m\theta} \\
M_{1,j}^\infty \coloneqq \lim_{\nu \to +\infty} M_{1,j} & = \frac{1}{m} \left(1 - \sum_{\ell=2}^m \frac{1-\theta}{\theta}\cos((j-1)\xi_\ell)\right) = \frac{1}{m} \left(1+\frac{1-\theta}{\theta}\right) = \frac{1}{m\theta} \quad (j \ge 2).
\end{align*}
\else
\begin{align*}
M_{1,1}^\infty \coloneqq \lim_{\nu \to +\infty} M_{1,1} & = \frac{1}{m} \left(1 - \sum_{\ell=2}^m \frac{1-\theta}{\theta}\right) = 1-\frac{m-1}{m\theta} \\
M_{1,j}^\infty \coloneqq \lim_{\nu \to +\infty} M_{1,j} & = \frac{1}{m} \left(1 - \sum_{\ell=2}^m \frac{1-\theta}{\theta}\cos((j-1)\xi_\ell)\right) = \frac{1}{m} \left(1+\frac{1-\theta}{\theta}\right) = \frac{1}{m\theta} \\ && \hspace*{-20pt} (j \ge 2).
\end{align*}
\fi
We see that
\[M_{1,j}^\infty>0 \text{ for all } 2\le j\le m \text{ and } \te\in(0,1],
\]
while
\[M_{1,1}^\infty>0 \quad\Longleftrightarrow\quad \theta>\frac{m-1}{m}.
\]
Thus for fixed $m\ge 3$ and $\theta>\frac{m-1}{m}$, the matrix $M$ is non-negative
if $\nu>0$ is large enough.
We now show that $M\ge 0$ also holds for $\theta=\frac{m-1}{m}$ with $m$ fixed and for $\nu>0$ large enough.
Clearly, we only need to verify the non-negativity of entry $M_{1,1}$ for $\nu>0$ large enough.
In fact, for $\theta=\frac{m-1}{m}$ and for \emph{any} $\nu>0$ we have $M_{1,1}> 0$. To see this, consider a summand with $2\le\ell\le m$ in $M_{1,1}$:
\[
\frac{1-\theta(1-\theta)\nu^2\sin^2(\xi_\ell)}{1+\theta^2\nu^2\sin^2(\xi_\ell)}\Bigg|_{\theta=\frac{m-1}{m}}=
\frac{m^2-(m-1) \nu ^2 \sin ^2\left(\xi _\ell\right)}{m^2+(m-1)^2 \nu ^2 \sin ^2\left(\xi _\ell\right)}=:\varphi(\nu,\ell).
\]
Its partial derivative with respect to $\nu$ is
\[
\partial_\nu\varphi(\nu,\ell)=-\frac{2 (m-1) m^3 \nu \sin ^2\left(\xi _\ell\right)}{\left(m^2+(m-1)^2 \nu ^2 \sin ^2\left(\xi _\ell\right)\right)^2}<0,
\]
and $\varphi(0,\ell)=1$, hence the function
\begin{align*}
\nu\mapsto M_{1,1}\Big|_{\theta=\frac{m-1}{m}} =
\frac{1}{m} \left(1 + \sum_{\ell=2}^{m} \varphi(\nu,\ell)\right)
\end{align*}
is positive at $\nu=0$, strictly decreases, and its limit when $\nu\to +\infty$ is
$M_{1,1}^\infty\big|_{\theta=\frac{m-1}{m}}=0$, completing the proof of the claim.\\
Summarizing the above, we have proved the following for any $m\ge 3$, $\te\in[0,1]$ and
$\nu>0$.
\end{description}
\begin{theorem}\label{thm1}
Consider the advection equation \eqref{advection} with periodic boundary condition discretized using
$2^{\text{nd}}$-order centered differences in space and the $\theta$-method in time with $m$ spatial grid
points.
The full discretization takes the form \eqref{M},
where\\
(i) if $m$ is even, then $M$ has at least one negative entry;\\
(ii) if $m$ is odd and $\theta\in\left[\frac{m-1}{m},1\right]$, then for large enough $\dt$ all
entries of $M$ are non-negative.
\end{theorem}
A refinement of Theorem~\ref{thm1} for odd values of $m$ will be given at the end of
Section~\ref{section3}, see Theorem~\ref{thm2}.
As for the interval $\theta\in\left[\frac{m-1}{m},1\right]$ appearing in Theorem~\ref{thm1}, see also
Figures~\ref{fig_variousk}--\ref{fig_boundary}.
\begin{remark}
In the formulae leading to Theorem~\ref{thm1} we used a trigonometric representation of the matrix
\emph{entries} $M_{1,j}$. Here we highlight a related approach to studying the non-negativity of $M$ by
relying only on the \emph{eigenvalues} $\sigma_\ell$ ($1\le \ell\le m$) of $M$. According to
\eqref{Mdualdef}, \eqref{Leigenvalues} and \eqref{R}, we have
\[
\sigma_\ell:=R(\nu\lambda_\ell)=\frac{1+ (1-\theta )\nu \imath \sin \left(\xi _\ell\right)}{1- \theta\nu \imath \sin \left(\xi _\ell\right)}.
\]
The main question in the context of \emph{non-negative inverse eigenvalue problems} is to
find (necessary or sufficient) conditions for a set $\Sigma:=\{\sigma_1,\ldots,\sigma_m\}\subset\mathbb{C}$ to be the spectrum of \emph{some} non-negative $m \times m$ matrix.
%In our situation, of course, the eigenvalues of $M(m,\te,\nu)$ also depend on the parameters $\te\in[0,1]$ and $\nu>0$. For this reason, a direct application of such a theorem to extract information on $\te$ and $\nu$ is not straightforward, so below we present only some examples.
One such condition is the following. It is known \cite[Chapter 4]{nonnegmatr} that if $\Sigma$ is the spectrum of
an $m \times m$ non-negative matrix, then
\begin{equation}\label{sigmampq}
\forall\, p, q \in\nplus:\quad\quad 0\le \left(\sum_{j=1}^m \sigma_j^{\,p}\right)^q\le m^{q-1} \sum_{j=1}^m \sigma_j^{\,p q}.
\end{equation}
For example, for $m=5$ and $\te=1$, \eqref{sigmampq} with $p\in\{1,\ldots,9\}$ and $q\in\{2,3\}$ yields the lower bounds
\begin{equation}\label{nustartpq}
\nu\ge \nu_{*}(p,q),
\end{equation}
where the approximate values of $\nu_{*}(p,q)$ are given below:
\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\nu_{*}(p,q) & p=1 & p=2 & p=3 & p=4 & p=5 & p=6 & p=7 & p=8 & p=9 \\
\hline
q=2 & 3.0074 & 1.462 & 0.9669 & 0.7219 & 0.5753 & 0.4778 & 0.4082 & 0.3563 & 0.3160 \\
\hline
q=3 & 2.1497 & 1.0269 & 0.6694 & 0.4941 & 0.3907 & 0.3227 & 0.2749 & 0.2393 & 0.2119 \\
\hline
\end{array}
\]
As we see, the necessary condition \eqref{sigmampq}---valid for \emph{any} non-negative matrix---already
implies that there are positive \emph{lower} bounds on $\nu$, although these bounds are not optimal.
%\begin{remark}
%In the actual computations of the values of $\nu_{*}(p,q)$, we made use of the property
%\[
%\forall\, r\in\nplus:\quad\quad\sum_{j=1}^m \sigma_j^{\,r}=\mathrm{trace}(M^r)\]
%to avoid computing the eigenvalues as functions of $\nu$, and to convert \eqref{sigmampq} into
%\begin{equation}\label{48converted}
%\left(\mathrm{trace}(M^p)\right)^q\le m^{q-1} \mathrm{trace}(M^{p q}),
%\end{equation}
%see Figure~\ref{fig_eigen1}. The resulting high-degree inequalities in $\nu$ have then been solved: for $p=9$ and $q=3$, for example, the rational functions in $\nu$ on both sides of \eqref{48converted} have numerator and denominator degrees 108.
%\end{remark}
%\begin{remark}
%In the definition of $\nu_R(2,1)$ in \eqref{nurdef}, the constant $y_R(2)$ can be simplified to a degree 6 algebraic number, and $\nu_R(2,1)$ itself is a degree 3 algebraic number.
%\end{remark}
%\begin{figure}
%\begin{center}
%\includegraphics[width=0.5\textwidth]{fig_eigenvalues1.pdf}
%\caption{The right- and left-hand sides of inequality \eqref{48converted}---as functions of $\nu$ with $m=5$, $\te=1$, $p=1$ and $q=2$---are shown as solid and dashed curves, respectively. The positive intersection point of the curves occurs at $\nu_{*}(1,2)\approx 3.0074$.}\label{fig_eigen1}
%\end{center}
%\end{figure}
It is possible to sharpen the lower bounds in \eqref{nustartpq} by making use of some more specific results.
%In order to facilitate a comparison, we consider again the case $m=5$, $\te=1$.
%The inequality \eqref{sigmampq} holds for any non-negative matrix. However,
We know in addition that the matrix $M$ is \emph{circulant}, which leads us to the realm of
\emph{structured non-negative inverse eigenvalue problems}. For example,
the spectra of non-negative circulant matrices have been characterized (with a necessary \emph{and} sufficient condition) in \cite[Theorem 10]{rojosoto}. From this theorem we get (still for $m=5$ and $\te=1$) the lower bound
\[
\nu\ge 3.9173.
\]
%To keep our presentation simple, we do not reproduce this theorem here due to its technical details, only give a short overview.
%Suppose that the matrix $M$ is non-negative and circulant. Then \cite[Theorem 10]{rojosoto} shows
%that the Perron--Frobenius root (that is, the non-negative eigenvalue equal to the spectral radius of $M$, which exists due to the classical Perron--Frobenius theorem \cite{nonnegmatr})
%that $\sigma_1\ge $ cannot be
%Interestingly, for $m=4$ and $\te=1$, the application of \cite[Theorem 10]{rojosoto} already shows that $M(4,1,\nu)\ge 0$ cannot hold for any $\nu>0$.
As we will see, the precise lower bound for this matrix---according to our Theorem~\ref{thm2} with $k=2$ and $\te=1$---is
\[
\nu\ge \nu_R(2,1)\approx 4.4111.
\]
\end{remark}
\begin{remark}
It is not restrictive to assume $a>0$ in \eqref{advection}. If we assumed $a<0$ instead, then the results of Theorems~\ref{thm1} and \ref{thm2} would remain valid (together with Figures~\ref{fig_variousk}--\ref{fig_boundary}, for example), with all the arguments in their proofs being essentially the same. For example, as we will see in Section~\ref{section3}, the non-negativity of (the first row of) matrix $M$ is governed by the elements $M_{1,1}$ and $M_{1,m}$ for $a>0$ and $m$ odd---this would change to elements $M_{1,1}$ and $M_{1,2}$ for $a<0$ and $m$ odd.
\end{remark}
%\subsection{Structured non-negative inverse eigenvalue problems}
\section{Second-order centered discretization in space and \texorpdfstring{$\theta$}{}-method in time---algebraic characterization of the entries of the full discretization matrix}\label{section3}
The results of Section~\ref{sectiondiscFourier} are based on the eigendecomposition of the full discretization matrix $M=\cF R(\nu \Lambda) \cF^*$. In this section, instead of using trigonometric functions, we give an algebraic description of the matrix entires by exploiting the relation $M=R(\nu L)$ in \eqref{Mdualdef} with $L$ defined in \eqref{Ldef}.
Explicitly, this means
\begin{equation}\label{Mdef}
M(m,\te,\nu)=(I-\te\nu L)^{-1}(I+(1-\te)\nu L)\in\mathbb{R}^{m\times m},
\end{equation}
but the dependence of $M$ on its parameters will often be suppressed.
It is trivial that for $\te=0$ we have $M(m,0,\nu)=I+\nu L$, hence $M\ge 0$ cannot hold for any $\nu>0$. The case $m=2k$ has been discussed in Section~\ref{sectioncentered}. Thus, throughout the rest of this section, we can assume that
\begin{equation}\label{genassump}
\boxed{
m=2k+1\quad (k\in\nplus), \ \ \ \nu>0 \text{\ \ and\ \ } 0<\te\le 1.}
\end{equation}
\subsection{Explicit description of the matrix entries for odd values of \texorpdfstring{$m$}{}}\label{explsect}
% When $m\ge 3$ is odd, it is not apparent how to use the trigonometric representation \eqref{firstrow-theta} to reveal information on the signs of the matrix entries $M_{1,j}$. Therefore, in this section, we first rewrite the entries in a certain algebraic form by invoking some low-order linear recursions. Then, in Section \ref{nonnegsect}, we will give conditions for $M_{1,j}\ge 0$ in terms of the parameters $\te$ and $\nu$.
%\begin{remark}
%The results obtained in this section are independent of the question of non-negativity, and may be applicable in other contexts as well.
%\end{remark}
To illustrate the structure of $M$, we present its first row (as a vector, and with the common denominator of the entries in front of it) for the smallest values of $m$.
\begin{example}\label{example1}
%For $m=2$,
%\[\frac{1}{{\theta ^2 \nu ^2}/{4}+1}\left(-\frac{1}{4} \theta ^2 \nu ^2+\frac{\theta \nu ^2}{4}+1,\theta \nu -\frac{\nu }{2}\right),\]
For $m=3$ the first row of \eqref{Mdef} is
\[
\frac{1}{{3 \theta ^2 \nu ^2}/{4}+1}\left(\frac{3 \theta ^2 \nu ^2}{4}-\frac{\theta \nu ^2}{2}+1,\frac{\theta \nu ^2}{4}+\frac{\nu }{2},\frac{\theta \nu ^2}{4}-\frac{\nu }{2}\right),
\]
while for $m=5$ we have
\[
\frac{1}{{5 \theta ^4 \nu ^4}/{16}+{5 \theta ^2 \nu ^2}/{4}+1}\left(\frac{5 \theta ^4 \nu ^4}{16}-\frac{\theta ^3 \nu ^4}{4}+\frac{5 \theta ^2 \nu ^2}{4}-\frac{\theta \nu ^2}{2}+1,\right.
\]
\[
\left.\frac{\theta ^3 \nu
^4}{16}+\frac{\theta ^2 \nu ^3}{4}+\frac{\nu }{2},\frac{\theta ^3 \nu ^4}{16}-\frac{\theta ^2 \nu ^3}{8}+\frac{\theta \nu ^2}{4},\frac{\theta ^3
\nu ^4}{16}+\frac{\theta ^2 \nu ^3}{8}+\frac{\theta \nu ^2}{4},\frac{\theta ^3 \nu ^4}{16}-\frac{\theta ^2 \nu ^3}{4}-\frac{\nu }{2}\right).
\]
\end{example}
Each element of $M$ is a rational function in the variables $\te$ and $\nu$. From \eqref{Mdef} it is clear that
\begin{equation}\label{M1jPjkDk}
M_{1,j}=\frac{\cP_{j,k}(\te,\nu) }{\cD_k(\te,\nu)}\quad\quad(j=1,2,\ldots,2k+1),
\end{equation}
where $\cP_{j,k}$ and $\cD_{k}$ are certain bivariate polynomials in $\te$ and $\nu$, and
\begin{equation}\label{dendet}
\cD_k:=\det\left(I_{(2k+1)\times(2k+1)}-\te\nu L_{(2k+1)\times(2k+1)}\right).
\end{equation}
\begin{remark}
The subscripts of $\cP_{j,k}$ thus refer to the position of the polynomial within the first row of $M$, and the size of $M\in\mathbb{R}^{(2k+1)\times(2k+1)}$, respectively.
\end{remark}
The key to describing $M$ algebraically is the observation that the polynomials $\cP_{j,k}$ and $\cD_{k}$ satisfy certain low-order linear recursions with constant coefficients. As already indicated by Section~\ref{sectioncentered}, the leftmost entry ($j=1$) behaves differently than the rest ($2\le j\le 2k+1$).
\begin{remark}
\textit{Mathematica}'s {\tt{FindLinearRecurrence}} command proved to be an efficient tool for discovering these linear recursions.
\end{remark}
First, let us introduce some new variables. On the one hand, as suggested by Example \ref{example1}, it seems convenient to set
\[
\mu:=\te^2\nu^2>0.
\]
Then, due to the sign assumptions, $\sqrt{\mu}=\te\nu$. On the other hand, as we will soon see, the polynomial
\[
\kappa ^2-\kappa \left(1+\frac{\mu }{2}\right)+\frac{\mu ^2}{16}
\]
will appear as a (factor of a) characteristic polynomial, and its roots are
\begin{equation}\label{kappa12}
\kappa_{1,2}=\frac{2+\mu \pm 2 \sqrt{\mu +1}}{4}=\left(\frac{\sqrt{1+\mu}\pm 1}{2}\right)^2.
\end{equation}
This motivates us to introduce yet another variable, which will further simplify our exposition. We set
\begin{equation}\label{ydef01}
y:=\frac{\sqrt{1+\mu}-1}{\sqrt{\mu}}=\frac{\sqrt{1+\te^2\nu^2}-1}{\te\nu}\in (0,1).
\end{equation}
It is seen that the transformation
\[
(0,+\infty)\ni\mu \longleftrightarrow y\in(0,1)
\]
is a bijection. Moreover, the following (inverse) relations
\[
\mu=\left(\frac{2y}{1-y^2}\right)^2,
\]
\[\mu y^2=2+\mu-2\sqrt{1+\mu},\]
\[\mu/y^2=2+\mu+2\sqrt{1+\mu},\]
and
\begin{equation}\label{fromytonu}
\nu=\frac{2y}{1-y^2}\cdot\frac{1}{\te}
\end{equation}
are easily verified. We can now start describing the entries of the first row of $M$.
\begin{remark}
Although the expressions $\cP_{j,k}$ and $\cD_{k}$ will become in general rational functions in the variable $y$, we still call them polynomials (referring to their structure in the original variables $\te$ and $\nu$).
\end{remark}
$\bullet$ The polynomials $\cD_k$. By carrying out some determinant expansions, we see that the determinants \eqref{dendet} obey the second-order parametric recursion
\begin{equation}\label{Dkrec}
\cD_{k+2}=\left(1+\frac{\mu}{2}\right)\cD_{k+1}-\frac{\mu^2}{16}\cD_k
\end{equation}
with initial conditions
\[
\cD_1=1+\frac{3\mu}{4}, \quad \cD_2=1+\frac{5\mu}{4}+\frac{5\mu^2}{16}
\]
(cf.~Example \ref{example1}). After solving this recursion, we obtain
\[
\cD_k=\left(\frac{\sqrt{1+\mu}+1}{2}\right)^{2 k+1}- \left(\frac{\sqrt{1+\mu}-1}{2}\right)^{2 k+1},
\]
which, in terms of the variable $y$, becomes
\begin{equation}\label{expldet}
\cD_k=\frac{1-y^{4 k+2}}{\left(1-y^2\right)^{2 k+1} }.
\end{equation}
$\bullet$ The polynomials $\cP_{1,k}$. They satisfy the recursion
\[
\cP_{1,k+2}=\left(1+\frac{\mu}{2}\right)\cP_{1,k+1}-\frac{\mu^2}{16}\cP_{1,k},
\]
that is, with coefficients being the same as in \eqref{Dkrec}, but with initial conditions
\[
\cP_{1,1}=1+\frac{3 \mu }{4}-\frac{\mu /\theta}{2 }, \quad \cP_{1,2}=1+\frac{5 \mu }{4}+\frac{5 \mu ^2}{16}-\frac{\mu/\theta }{2 }-\frac{\mu ^2/\theta}{4 }
\]
(cf.~Example \ref{example1}). By solving this recursion, we derive that
\begin{equation}\label{P1kexpl}
\cP_{1,k}=\frac{\Pol}{ \left(1+y^2\right)\left(1-y^2\right)^{2 k+1}\theta},
\end{equation}
where the numerator is
\begin{equation}\label{poldef}
\Pol:=-\theta y^{4 k+4}-(\theta -2) y^{4 k+2}+(\theta -2) y^2+\theta.
\end{equation}
\begin{remark}
Here, the subscript $L$ stands for \emph{leftmost}. This polynomial will play a special role in the next section.
\end{remark}
$\bullet$ The polynomials $\cP_{2,k}$. They satisfy a third-order recursion in the variable $k$,
\begin{equation}\label{cP2rec}
\cP_{2,k+3}=\left(1+\frac{3\mu}{4}\right)\cP_{2,k+2}-\left(\frac{\mu }{4}+\frac{3 \mu ^2}{16}\right)\cP_{2,k+1}+\frac{\mu ^3}{64}\cP_{2,k},
\end{equation}
with initial conditions
\[
\cP_{2,1}=\left(\frac{1}{2}+\frac{\sqrt{\mu }}{4}\right) \nu, \quad \cP_{2,2}=\left(\frac{1}{2}+\frac{\mu }{4}+\frac{\mu ^{3/2}}{16}\right) \nu,
\]
\[
\cP_{2,3}=\left(\frac{1}{2}+\frac{\mu }{2}+\frac{3 \mu ^2}{32}+\frac{\mu ^{5/2}}{64}\right) \nu.
\]
The characteristic polynomial of recursion \eqref{cP2rec} is
\[
\kappa ^3-\kappa ^2 \left(1+\frac{3 \mu }{4}\right)+\kappa \left(\frac{\mu }{4}+\frac{3 \mu ^2}{16}\right)-\frac{\mu ^3}{64}=\left(\kappa-\frac{\mu }{4}\right)\left(\kappa ^2-\kappa \left(1+\frac{\mu }{2}\right)+\frac{\mu ^2}{16}\right),
\]
hence the characteristic roots are $\kappa_{1,2}$ as in \eqref{kappa12}, and $\kappa_3={\mu }/{4}$. Based on this, one easily obtains the explicit solution as
\begin{equation}\label{cP2kexpl}
\cP_{2,k}=\frac{\nu \left(1-y^2\right)^{1-2 k} \left(1+y^{2 k-1}+y^{2 k+1}-y^{4 k}\right)}{2 \left(1+y^2\right)}.
\end{equation}
$\bullet$ The polynomials $\cP_{3,k}$. They satisfy the same third-order recursion in the variable $k$ as \eqref{cP2rec},
\[
\cP_{3,k+3}=\left(1+\frac{3\mu}{4}\right)\cP_{3,k+2}-\left(\frac{\mu }{4}+\frac{3 \mu ^2}{16}\right)\cP_{3,k+1}+\frac{\mu ^3}{64}\cP_{3,k},
\]
but with initial conditions
\[
\cP_{3,1}=\left(-\frac{1}{2}+\frac{\sqrt{\mu }}{4}\right) \nu, \quad \cP_{3,2}=\left(\frac{\sqrt{\mu} }{4}-\frac{\mu}{8}+\frac{\mu ^{3/2}}{16}\right) \nu,
\]
\[
\cP_{3,3}=\left(\frac{\sqrt{\mu }}{4}-\frac{\mu ^2}{32}+\frac{3 \mu ^{3/2}}{16}+\frac{\mu ^{5/2}}{64}\right) \nu.
\]
The explicit solution of this recursion is
\begin{equation}\label{cP3kexpl}
\cP_{3,k}=\frac{\nu \left(1-y^2\right)^{1-2 k} \left(y-y^{2 k-2}+y^{2 k+2}+y^{4 k-1}\right)}{2 \left(1+y^2\right)}.
\end{equation}
\begin{remark}
We note that, for any \emph{fixed} $j\ge 2$, the polynomials $\cP_{j,k}$ satisfy the same third-order recursion \eqref{cP2rec} in the variable $k$, with triplets of initial conditions depending on $j$. However, we cannot use this approach to proceed, since setting up the initial conditions would require, among others, the knowledge of the polynomials $\cP_{j,1}$ (for $j=2, 3$), $\cP_{j,2}$ (for $j=4, 5$), $\cP_{j,3}$ (for $j=6, 7$), and so on.
\end{remark}
$\bullet$ The polynomials $\cP_{j,k}$ ($4\le j\le 2k+1$, $k\ge 2$). They satisfy the following second-order recursion in the variable $j$ when $k$ is \emph{fixed} (hence having only finitely many terms for a particular $k$):
\[
\cP_{j+2,k}=-\frac{2}{\sqrt{\mu }}\cP_{j+1,k}+\cP_{j,k}.
\]
For the initial conditions of this final recursion, we use the general forms of $\cP_{2,k}$ and $\cP_{3,k}$ in \eqref{cP2kexpl} and \eqref{cP3kexpl} to get for any $k\ge 1$ and $2\le j\le 2k+1$ that
\begin{equation}\label{Pjkexpl}
\cP_{j,k}=\frac{\nu \left(1-y^2\right)^{1-2 k}}{2 \left(1+y^2\right)}P_{j,k}(y),
\end{equation}
where the polynomials $P_{j,k}$ are defined as
\begin{equation}\label{Pjky}
P_{j,k}(y)\coloneqq(-1)^{j-1} y^{4 k+2-j}+y^{2 k-1+j}+(-1)^j y^{2 k+1-j}+y^{j-2}.
\end{equation}
As a special case, we set
\[
\Por:=P_{2k+1,k}(y),
\]
in other words we have
\begin{equation}\label{pordef}
\Por=y^{4 k}+y^{2 k+1}+y^{2 k-1}-1,
\end{equation}
where the subscript $R$ stands for \textit{rightmost}.
\begin{remark}
As a by-product, we have obtained the following set of identities by comparing the trigonometric and algebraic representations presented so far. They are also interesting from a structural point of view: although the number of terms in the trigonometric sums increases as $k$ gets larger, the polynomials in $y$ are sparse polynomials (also known as lacunary polynomials or fewnomials)---the number of terms does not increase as the polynomial degree increases.
\end{remark}
\begin{corollary} \label{corollary1}
With $M$ defined in \eqref{Mdef}, $\te>0$, $\nu>0$, $k\in\nplus$, $y=\frac{\sqrt{1+\te^2\nu^2}-1}{\te\nu}$, and $\xi_\ell = \frac{2\pi(\ell-1)}{2k+1}$, we have that
\[
\frac{1}{2k+1} \sum_{\ell=1}^{2k+1} \frac{1+\imath(1-\theta)\nu \sin(\xi_\ell)}{1-\imath\theta\nu \sin(\xi_\ell)}=
\]
\[
M_{1,1}=\frac{\cP_{1,k}}{\cD_k}=
\]
\[
\frac{-\theta y^{4 k+4}-(\theta -2) y^{4 k+2}+(\theta -2) y^2+\theta}{ \left(1+y^2\right)\left(1-y^{4 k+2}\right)\theta}.