-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsshrsag.c
109 lines (98 loc) · 3.58 KB
/
sshrsag.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
* RSA key generation.
*/
#include <assert.h>
#include "ssh.h"
#define RSA_EXPONENT 37 /* we like this prime */
int rsa_generate(struct RSAKey *key, int bits, progfn_t pfn,
void *pfnparam)
{
Bignum pm1, qm1, phi_n;
unsigned pfirst, qfirst;
/*
* Set up the phase limits for the progress report. We do this
* by passing minus the phase number.
*
* For prime generation: our initial filter finds things
* coprime to everything below 2^16. Computing the product of
* (p-1)/p for all prime p below 2^16 gives about 20.33; so
* among B-bit integers, one in every 20.33 will get through
* the initial filter to be a candidate prime.
*
* Meanwhile, we are searching for primes in the region of 2^B;
* since pi(x) ~ x/log(x), when x is in the region of 2^B, the
* prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
* 1/0.6931B. So the chance of any given candidate being prime
* is 20.33/0.6931B, which is roughly 29.34 divided by B.
*
* So now we have this probability P, we're looking at an
* exponential distribution with parameter P: we will manage in
* one attempt with probability P, in two with probability
* P(1-P), in three with probability P(1-P)^2, etc. The
* probability that we have still not managed to find a prime
* after N attempts is (1-P)^N.
*
* We therefore inform the progress indicator of the number B
* (29.34/B), so that it knows how much to increment by each
* time. We do this in 16-bit fixed point, so 29.34 becomes
* 0x1D.57C4.
*/
pfn(pfnparam, PROGFN_PHASE_EXTENT, 1, 0x10000);
pfn(pfnparam, PROGFN_EXP_PHASE, 1, -0x1D57C4 / (bits / 2));
pfn(pfnparam, PROGFN_PHASE_EXTENT, 2, 0x10000);
pfn(pfnparam, PROGFN_EXP_PHASE, 2, -0x1D57C4 / (bits - bits / 2));
pfn(pfnparam, PROGFN_PHASE_EXTENT, 3, 0x4000);
pfn(pfnparam, PROGFN_LIN_PHASE, 3, 5);
pfn(pfnparam, PROGFN_READY, 0, 0);
/*
* We don't generate e; we just use a standard one always.
*/
key->exponent = bignum_from_long(RSA_EXPONENT);
/*
* Generate p and q: primes with combined length `bits', not
* congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
* and e to be coprime, and (q-1) and e to be coprime, but in
* general that's slightly more fiddly to arrange. By choosing
* a prime e, we can simplify the criterion.)
*/
invent_firstbits(&pfirst, &qfirst);
key->p = primegen(bits / 2, RSA_EXPONENT, 1, NULL,
1, pfn, pfnparam, pfirst);
key->q = primegen(bits - bits / 2, RSA_EXPONENT, 1, NULL,
2, pfn, pfnparam, qfirst);
/*
* Ensure p > q, by swapping them if not.
*/
if (bignum_cmp(key->p, key->q) < 0) {
Bignum t = key->p;
key->p = key->q;
key->q = t;
}
/*
* Now we have p, q and e. All we need to do now is work out
* the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
* and (q^-1 mod p).
*/
pfn(pfnparam, PROGFN_PROGRESS, 3, 1);
key->modulus = bigmul(key->p, key->q);
pfn(pfnparam, PROGFN_PROGRESS, 3, 2);
pm1 = copybn(key->p);
decbn(pm1);
qm1 = copybn(key->q);
decbn(qm1);
phi_n = bigmul(pm1, qm1);
pfn(pfnparam, PROGFN_PROGRESS, 3, 3);
freebn(pm1);
freebn(qm1);
key->private_exponent = modinv(key->exponent, phi_n);
assert(key->private_exponent);
pfn(pfnparam, PROGFN_PROGRESS, 3, 4);
key->iqmp = modinv(key->q, key->p);
assert(key->iqmp);
pfn(pfnparam, PROGFN_PROGRESS, 3, 5);
/*
* Clean up temporary numbers.
*/
freebn(phi_n);
return 1;
}