The code is based on MMdetection 2.26.0, MMrotate 0.3.4 and MMCV-full 1.7.2. We modify its data loading, related classes, and functions. We revise the MMdetection and MMrotate to a multi-modal oriented detection framework to facilitate Multimodal Object Detection.
ref : mmrotate installation and mmdetection installation
Step 1: Clone the E2E-MFD repository:
To get started, first clone the E2E-MFD repository and navigate to the project directory:
git clone https://github.com/icey-zhang/E2E-MFD
cd E2E-MFD
Step 2: Environment Setup:
E2E-MFD recommends setting up a conda environment and installing dependencies via pip. Use the following commands to set up your environment:
Create and activate a new conda environment
conda create -n E2E-MFD python=3.9.17
conda activate E2E-MFD
If you develop and run mmrotate directly, install it from source
pip install -v -e .
Install Dependencies
pip install -r requirements.txt
DroneVehicle is a publicly available dataset.
you can download the dataset at baiduyun with train (code:ngar) and test (code:tqwc).
root
├── DroneVehicle
│ ├── train
│ │ ├── rgb
│ │ │ ├── images
│ │ │ ├── labels
│ │ ├── ir
│ │ │ ├── images
│ │ │ ├── labels
│ ├── test
│ │ ├── rgb
│ │ │ ├── images
│ │ │ ├── labels
│ │ ├── ir
│ │ │ ├── images
│ │ │ ├── labels
Use the config file with this.
python ./tools/train.py
python ./tools/test.py
python ./tools/generate_fusion_image.py
DroneVehicle weights
DroneVehicle logs
If our code is helpful to you, please cite:
@ARTICLE{10075555,
author={Zhang, Jiaqing and Lei, Jie and Xie, Weiying and Fang, Zhenman and Li, Yunsong and Du, Qian},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery},
year={2023},
volume={61},
number={},
pages={1-15},
doi={10.1109/TGRS.2023.3258666}}
@article{zhang2023guided,
title={Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-one Self-teaching},
author={Zhang, Jiaqing and Lei, Jie and Xie, Weiying and Li, Yunsong and Yang, Geng and Jia, Xiuping},
journal={IEEE Transactions on Geoscience and Remote Sensing},
year={2023},
publisher={IEEE}
}
@misc{zhang2024e2emfd,
title={E2E-MFD: Towards End-to-End Synchronous Multimodal Fusion Detection},
author={Jiaqing Zhang and Mingxiang Cao and Xue Yang and Weiying Xie and Jie Lei and Daixun Li and Wenbo Huang and Yunsong Li},
year={2024},
eprint={2403.09323},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2403.09323},
}