-
Notifications
You must be signed in to change notification settings - Fork 41
/
poly_point_isect.py
1306 lines (1089 loc) · 41.9 KB
/
poly_point_isect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# BentleyOttmann sweep-line implementation
# (for finding all intersections in a set of line segments)
from __future__ import annotations
__all__ = (
"isect_segments",
"isect_polygon",
# same as above but includes segments with each intersections
"isect_segments_include_segments",
"isect_polygon_include_segments",
# for testing only (correct but slow)
"isect_segments__naive",
"isect_polygon__naive",
)
# ----------------------------------------------------------------------------
# Main Poly Intersection
# Defines to change behavior.
#
# Whether to ignore intersections of line segments when both
# their end points form the intersection point.
USE_IGNORE_SEGMENT_ENDINGS = True
USE_DEBUG = True
USE_VERBOSE = False
# checks we should NOT need,
# but do them in case we find a test-case that fails.
USE_PARANOID = False
# Support vertical segments,
# (the bentley-ottmann method doesn't support this).
# We use the term 'START_VERTICAL' for a vertical segment,
# to differentiate it from START/END/INTERSECTION
USE_VERTICAL = True
# end defines!
# ------------
# ---------
# Constants
X, Y = 0, 1
# -----------------------------------------------------------------------------
# Switchable Number Implementation
NUMBER_TYPE = 'native'
if NUMBER_TYPE == 'native':
Real = float
NUM_EPS = Real("1e-10")
NUM_INF = Real(float("inf"))
elif NUMBER_TYPE == 'decimal':
# Not passing tests!
import decimal
Real = decimal.Decimal
decimal.getcontext().prec = 80
NUM_EPS = Real("1e-10")
NUM_INF = Real(float("inf"))
elif NUMBER_TYPE == 'numpy':
import numpy
Real = numpy.float64
del numpy
NUM_EPS = Real("1e-10")
NUM_INF = Real(float("inf"))
elif NUMBER_TYPE == 'gmpy2':
# Not passing tests!
import gmpy2
gmpy2.set_context(gmpy2.ieee(128))
Real = gmpy2.mpz
NUM_EPS = Real(float("1e-10"))
NUM_INF = gmpy2.get_emax_max()
del gmpy2
else:
raise Exception("Type not found")
NUM_EPS_SQ = NUM_EPS * NUM_EPS
NUM_ZERO = Real(0.0)
NUM_ONE = Real(1.0)
class Event:
__slots__ = (
"type",
"point",
"segment",
# this is just cache,
# we may remove or calculate slope on the fly
"slope",
"span",
) + (() if not USE_DEBUG else (
# debugging only
"other",
"in_sweep",
))
class Type:
END = 0
INTERSECTION = 1
START = 2
if USE_VERTICAL:
START_VERTICAL = 3
def __init__(self, type, point, segment, slope):
assert isinstance(point, tuple)
self.type = type
self.point = point
self.segment = segment
# will be None for INTERSECTION
self.slope = slope
if segment is not None:
self.span = segment[1][X] - segment[0][X]
if USE_DEBUG:
self.other = None
self.in_sweep = False
# note that this isn't essential,
# it just avoids non-deterministic ordering, see #9.
def __hash__(self):
return hash(self.point)
def is_vertical(self):
# return self.segment[0][X] == self.segment[1][X]
return self.span == NUM_ZERO
def y_intercept_x(self, x: Real):
# vertical events only for comparison (above_all check)
# never added into the binary-tree its self
if USE_VERTICAL:
if self.is_vertical():
return None
if x <= self.segment[0][X]:
return self.segment[0][Y]
elif x >= self.segment[1][X]:
return self.segment[1][Y]
# use the largest to avoid float precision error with nearly vertical lines.
delta_x0 = x - self.segment[0][X]
delta_x1 = self.segment[1][X] - x
if delta_x0 > delta_x1:
ifac = delta_x0 / self.span
fac = NUM_ONE - ifac
else:
fac = delta_x1 / self.span
ifac = NUM_ONE - fac
assert fac <= NUM_ONE
return (self.segment[0][Y] * fac) + (self.segment[1][Y] * ifac)
@staticmethod
def Compare(sweep_line, this, that):
if this is that:
return 0
if USE_DEBUG:
if this.other is that:
return 0
current_point_x = sweep_line._current_event_point_x
this_y = this.y_intercept_x(current_point_x)
that_y = that.y_intercept_x(current_point_x)
# print(this_y, that_y)
if USE_VERTICAL:
if this_y is None:
this_y = this.point[Y]
if that_y is None:
that_y = that.point[Y]
delta_y = this_y - that_y
assert (delta_y < NUM_ZERO) == (this_y < that_y)
# NOTE, VERY IMPORTANT TO USE EPSILON HERE!
# otherwise w/ float precision errors we get incorrect comparisons
# can get very strange & hard to debug output without this.
if abs(delta_y) > NUM_EPS:
return -1 if (delta_y < NUM_ZERO) else 1
else:
this_slope = this.slope
that_slope = that.slope
if this_slope != that_slope:
if sweep_line._before:
return -1 if (this_slope > that_slope) else 1
else:
return 1 if (this_slope > that_slope) else -1
delta_x_p1 = this.segment[0][X] - that.segment[0][X]
if delta_x_p1 != NUM_ZERO:
return -1 if (delta_x_p1 < NUM_ZERO) else 1
delta_x_p2 = this.segment[1][X] - that.segment[1][X]
if delta_x_p2 != NUM_ZERO:
return -1 if (delta_x_p2 < NUM_ZERO) else 1
return 0
def __repr__(self):
return ("Event(0x%x, s0=%r, s1=%r, p=%r, type=%d, slope=%r)" % (
id(self),
self.segment[0], self.segment[1],
self.point,
self.type,
self.slope,
))
class SweepLine:
__slots__ = (
# A map holding all intersection points mapped to the Events
# that form these intersections.
# {Point: set(Event, ...), ...}
"intersections",
"queue",
# Events (sorted set of ordered events, no values)
#
# note: START & END events are considered the same so checking if an event is in the tree
# will return true if its opposite side is found.
# This is essential for the algorithm to work, and why we don't explicitly remove START events.
# Instead, the END events are never added to the current sweep, and removing them also removes the start.
"_events_current_sweep",
# The point of the current Event.
"_current_event_point_x",
# A flag to indicate if we're slightly before or after the line.
"_before",
)
def __init__(self, queue: EventQueue):
self.intersections = {}
self.queue = queue
self._current_event_point_x = None
self._events_current_sweep = RBTree(cmp=Event.Compare, cmp_data=self)
self._before = True
def get_intersections(self):
"""
Return a list of unordered intersection points.
"""
if Real is float:
return list(self.intersections.keys())
else:
return [(float(p[0]), float(p[1])) for p in self.intersections.keys()]
# Not essential for implementing this algorithm, but useful.
def get_intersections_with_segments(self):
"""
Return a list of unordered intersection '(point, segment)' pairs,
where segments may contain 2 or more values.
"""
if Real is float:
return [
(p, [event.segment for event in event_set])
for p, event_set in self.intersections.items()
]
else:
return [
(
(float(p[0]), float(p[1])),
[((float(event.segment[0][0]), float(event.segment[0][1])),
(float(event.segment[1][0]), float(event.segment[1][1])))
for event in event_set],
)
for p, event_set in self.intersections.items()
]
# Checks if an intersection exists between two Events 'a' and 'b'.
def _check_intersection(self, a: Event, b: Event):
# Return immediately in case either of the events is null, or
# if one of them is an INTERSECTION event.
if (
(a is None or b is None) or
(a.type == Event.Type.INTERSECTION) or
(b.type == Event.Type.INTERSECTION)
):
return
if a is b:
return
# Get the intersection point between 'a' and 'b'.
p = isect_seg_seg_v2_point(
a.segment[0], a.segment[1],
b.segment[0], b.segment[1],
)
# No intersection exists.
if p is None:
return
# If the intersection is formed by both the segment endings, AND
# USE_IGNORE_SEGMENT_ENDINGS is true,
# return from this method.
if USE_IGNORE_SEGMENT_ENDINGS:
if ((len_squared_v2v2(p, a.segment[0]) < NUM_EPS_SQ or
len_squared_v2v2(p, a.segment[1]) < NUM_EPS_SQ) and
(len_squared_v2v2(p, b.segment[0]) < NUM_EPS_SQ or
len_squared_v2v2(p, b.segment[1]) < NUM_EPS_SQ)):
return
# Add the intersection.
events_for_point = self.intersections.pop(p, set())
is_new = len(events_for_point) == 0
events_for_point.add(a)
events_for_point.add(b)
self.intersections[p] = events_for_point
# If the intersection occurs to the right of the sweep line, OR
# if the intersection is on the sweep line and it's above the
# current event-point, add it as a new Event to the queue.
if is_new and p[X] >= self._current_event_point_x:
event_isect = Event(Event.Type.INTERSECTION, p, None, None)
self.queue.offer(p, event_isect)
def _sweep_to(self, p):
if p[X] == self._current_event_point_x:
# happens in rare cases,
# we can safely ignore
return
self._current_event_point_x = p[X]
def insert(self, event):
assert event not in self._events_current_sweep
assert not USE_VERTICAL or event.type != Event.Type.START_VERTICAL
if USE_DEBUG:
assert event.in_sweep == False
assert event.other.in_sweep == False
self._events_current_sweep.insert(event, None)
if USE_DEBUG:
event.in_sweep = True
event.other.in_sweep = True
def remove(self, event):
try:
self._events_current_sweep.remove(event)
if USE_DEBUG:
assert event.in_sweep
assert event.other.in_sweep
event.in_sweep = False
event.other.in_sweep = False
return True
except KeyError:
if USE_DEBUG:
assert event.in_sweep is False
assert event.other.in_sweep is False
return False
def above(self, event):
return self._events_current_sweep.succ_key(event, None)
def below(self, event):
return self._events_current_sweep.prev_key(event, None)
'''
def above_all(self, event):
while True:
event = self.above(event)
if event is None:
break
yield event
'''
def above_all(self, event):
# assert(event not in self._events_current_sweep)
return self._events_current_sweep.key_slice(event, None, reverse=False)
def handle(self, p, events_current):
if len(events_current) == 0:
return
# done already
# self._sweep_to(events_current[0])
assert p[0] == self._current_event_point_x
if not USE_IGNORE_SEGMENT_ENDINGS:
if len(events_current) > 1:
for i in range(0, len(events_current) - 1):
for j in range(i + 1, len(events_current)):
self._check_intersection(
events_current[i], events_current[j])
for e in events_current:
self.handle_event(e)
def handle_event(self, event):
t = event.type
if t == Event.Type.START:
# print(" START")
self._before = False
self.insert(event)
e_above = self.above(event)
e_below = self.below(event)
self._check_intersection(event, e_above)
self._check_intersection(event, e_below)
if USE_PARANOID:
self._check_intersection(e_above, e_below)
elif t == Event.Type.END:
# print(" END")
self._before = True
e_above = self.above(event)
e_below = self.below(event)
self.remove(event)
self._check_intersection(e_above, e_below)
if USE_PARANOID:
self._check_intersection(event, e_above)
self._check_intersection(event, e_below)
elif t == Event.Type.INTERSECTION:
# print(" INTERSECTION")
self._before = True
event_set = self.intersections[event.point]
# note: events_current aren't sorted.
reinsert_stack = [] # Stack
for e in event_set:
# Since we know the Event wasn't already removed,
# we want to insert it later on.
if self.remove(e):
reinsert_stack.append(e)
self._before = False
# Insert all Events that we were able to remove.
while reinsert_stack:
e = reinsert_stack.pop()
self.insert(e)
e_above = self.above(e)
e_below = self.below(e)
self._check_intersection(e, e_above)
self._check_intersection(e, e_below)
if USE_PARANOID:
self._check_intersection(e_above, e_below)
elif (USE_VERTICAL and
(t == Event.Type.START_VERTICAL)):
# just check sanity
assert event.segment[0][X] == event.segment[1][X]
assert event.segment[0][Y] <= event.segment[1][Y]
# In this case we only need to find all segments in this span.
y_above_max = event.segment[1][Y]
# self.insert(event)
for e_above in self.above_all(event):
if e_above.type == Event.Type.START_VERTICAL:
continue
y_above = e_above.y_intercept_x(
self._current_event_point_x)
if USE_IGNORE_SEGMENT_ENDINGS:
if y_above >= y_above_max - NUM_EPS:
break
else:
if y_above > y_above_max:
break
# We know this intersects,
# so we could use a faster function now:
# ix = (self._current_event_point_x, y_above)
# ...however best use existing functions
# since it does all sanity checks on endpoints... etc.
self._check_intersection(event, e_above)
# self.remove(event)
class EventQueue:
__slots__ = (
# note: we only ever pop_min, this could use a 'heap' structure.
# The sorted map holding the points -> event list
# [Point: Event] (tree)
"events_scan",
)
def __init__(self, segments):
self.events_scan = RBTree()
# segments = [s for s in segments if s[0][0] != s[1][0] and s[0][1] != s[1][1]]
for s in segments:
assert s[0][X] <= s[1][X]
slope = slope_v2v2(*s)
if s[0] == s[1]:
pass
elif USE_VERTICAL and (s[0][X] == s[1][X]):
e_start = Event(Event.Type.START_VERTICAL, s[0], s, slope)
if USE_DEBUG:
e_start.other = e_start # FAKE, avoid error checking
self.offer(s[0], e_start)
else:
e_start = Event(Event.Type.START, s[0], s, slope)
e_end = Event(Event.Type.END, s[1], s, slope)
if USE_DEBUG:
e_start.other = e_end
e_end.other = e_start
self.offer(s[0], e_start)
self.offer(s[1], e_end)
def offer(self, p, e: Event):
"""
Offer a new event ``s`` at point ``p`` in this queue.
"""
existing = self.events_scan.setdefault(
p, ([], [], [], []) if USE_VERTICAL else
([], [], []),
)
# Can use double linked-list for easy insertion at beginning/end
'''
if e.type == Event.Type.END:
existing.insert(0, e)
else:
existing.append(e)
'''
existing[e.type].append(e)
# return a set of events
def poll(self):
"""
Get, and remove, the first (lowest) item from this queue.
:return: the first (lowest) item from this queue.
:rtype: Point, Event pair.
"""
assert len(self.events_scan) != 0
p, events_current = self.events_scan.pop_min()
return p, events_current
def isect_segments_impl(segments, *, include_segments=False, validate=True) -> list:
# order points left -> right
if Real is float:
segments = [
# in nearly all cases, comparing X is enough,
# but compare Y too for vertical lines
(s[0], s[1]) if (s[0] <= s[1]) else
(s[1], s[0])
for s in segments]
else:
segments = [
# in nearly all cases, comparing X is enough,
# but compare Y too for vertical lines
(
(Real(s[0][0]), Real(s[0][1])),
(Real(s[1][0]), Real(s[1][1])),
) if (s[0] <= s[1]) else
(
(Real(s[1][0]), Real(s[1][1])),
(Real(s[0][0]), Real(s[0][1])),
)
for s in segments]
# Ensure segments don't have duplicates or single points, see: #24.
if validate:
segments_old = segments
segments = []
visited = set()
for s in segments_old:
# Ignore points.
if s[0] == s[1]:
continue
# Ignore duplicates.
if s in visited:
continue
visited.add(s)
segments.append(s)
del segments_old
queue = EventQueue(segments)
sweep_line = SweepLine(queue)
while len(queue.events_scan) > 0:
if USE_VERBOSE:
print(len(queue.events_scan), sweep_line._current_event_point_x)
p, e_ls = queue.poll()
for events_current in e_ls:
if events_current:
sweep_line._sweep_to(p)
sweep_line.handle(p, events_current)
if include_segments is False:
return sweep_line.get_intersections()
else:
return sweep_line.get_intersections_with_segments()
def isect_polygon_impl(points, *, include_segments=False, validate=True) -> list:
n = len(points)
segments = [
(tuple(points[i]), tuple(points[(i + 1) % n]))
for i in range(n)
]
return isect_segments_impl(segments, include_segments=include_segments, validate=validate)
def isect_segments(segments, *, validate=True) -> list:
return isect_segments_impl(segments, include_segments=False, validate=validate)
def isect_polygon(segments, *, validate=True) -> list:
return isect_polygon_impl(segments, include_segments=False, validate=validate)
def isect_segments_include_segments(segments, *, validate=True) -> list:
return isect_segments_impl(segments, include_segments=True, validate=validate)
def isect_polygon_include_segments(segments, *, validate=True) -> list:
return isect_polygon_impl(segments, include_segments=True, validate=validate)
# ----------------------------------------------------------------------------
# 2D math utilities
def slope_v2v2(p1, p2):
if p1[X] == p2[X]:
if p1[Y] < p2[Y]:
return NUM_INF
else:
return -NUM_INF
else:
return (p2[Y] - p1[Y]) / (p2[X] - p1[X])
def sub_v2v2(a, b):
return (
a[0] - b[0],
a[1] - b[1])
def dot_v2v2(a, b):
return (
(a[0] * b[0]) +
(a[1] * b[1]))
def len_squared_v2v2(a, b):
c = sub_v2v2(a, b)
return dot_v2v2(c, c)
def line_point_factor_v2(p, l1, l2, default=NUM_ZERO):
u = sub_v2v2(l2, l1)
h = sub_v2v2(p, l1)
dot = dot_v2v2(u, u)
return (dot_v2v2(u, h) / dot) if dot != NUM_ZERO else default
def isect_seg_seg_v2_point(v1, v2, v3, v4, bias=NUM_ZERO):
# Only for predictability and hashable point when same input is given
if v1 > v2:
v1, v2 = v2, v1
if v3 > v4:
v3, v4 = v4, v3
if (v1, v2) > (v3, v4):
v1, v2, v3, v4 = v3, v4, v1, v2
div = (v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0])
if div == NUM_ZERO:
return None
vi = (((v3[0] - v4[0]) *
(v1[0] * v2[1] - v1[1] * v2[0]) - (v1[0] - v2[0]) *
(v3[0] * v4[1] - v3[1] * v4[0])) / div,
((v3[1] - v4[1]) *
(v1[0] * v2[1] - v1[1] * v2[0]) - (v1[1] - v2[1]) *
(v3[0] * v4[1] - v3[1] * v4[0])) / div,
)
fac = line_point_factor_v2(vi, v1, v2, default=-NUM_ONE)
if fac < NUM_ZERO - bias or fac > NUM_ONE + bias:
return None
fac = line_point_factor_v2(vi, v3, v4, default=-NUM_ONE)
if fac < NUM_ZERO - bias or fac > NUM_ONE + bias:
return None
# vi = round(vi[X], 8), round(vi[Y], 8)
return vi
# ----------------------------------------------------------------------------
# Simple naive line intersect, (for testing only)
def isect_segments__naive(segments) -> list:
"""
Brute force O(n2) version of ``isect_segments`` for test validation.
"""
isect = []
# order points left -> right
if Real is float:
segments = [
(s[0], s[1]) if s[0][X] <= s[1][X] else
(s[1], s[0])
for s in segments]
else:
segments = [
(
(Real(s[0][0]), Real(s[0][1])),
(Real(s[1][0]), Real(s[1][1])),
) if (s[0] <= s[1]) else
(
(Real(s[1][0]), Real(s[1][1])),
(Real(s[0][0]), Real(s[0][1])),
)
for s in segments]
n = len(segments)
for i in range(n):
a0, a1 = segments[i]
for j in range(i + 1, n):
b0, b1 = segments[j]
if a0 not in (b0, b1) and a1 not in (b0, b1):
ix = isect_seg_seg_v2_point(a0, a1, b0, b1)
if ix is not None:
# USE_IGNORE_SEGMENT_ENDINGS handled already
isect.append(ix)
return isect
def isect_polygon__naive(points) -> list:
"""
Brute force O(n2) version of ``isect_polygon`` for test validation.
"""
isect = []
n = len(points)
if Real is float:
pass
else:
points = [(Real(p[0]), Real(p[1])) for p in points]
for i in range(n):
a0, a1 = points[i], points[(i + 1) % n]
for j in range(i + 1, n):
b0, b1 = points[j], points[(j + 1) % n]
if a0 not in (b0, b1) and a1 not in (b0, b1):
ix = isect_seg_seg_v2_point(a0, a1, b0, b1)
if ix is not None:
if USE_IGNORE_SEGMENT_ENDINGS:
if ((len_squared_v2v2(ix, a0) < NUM_EPS_SQ or
len_squared_v2v2(ix, a1) < NUM_EPS_SQ) and
(len_squared_v2v2(ix, b0) < NUM_EPS_SQ or
len_squared_v2v2(ix, b1) < NUM_EPS_SQ)):
continue
isect.append(ix)
return isect
# ----------------------------------------------------------------------------
# Inline Libs
#
# bintrees: 2.0.2, extracted from:
# http://pypi.python.org/pypi/bintrees
#
# - Removed unused functions, such as slicing and range iteration.
# - Added 'cmp' and and 'cmp_data' arguments,
# so we can define our own comparison that takes an arg.
# Needed for sweep-line.
# - Added support for 'default' arguments for prev_item/succ_item,
# so we can avoid exception handling.
# -------
# ABCTree
from operator import attrgetter
_sentinel = object()
class _ABCTree(object):
def __init__(self, cmp=None, cmp_data=None):
"""T.__init__(...) initializes T; see T.__class__.__doc__ for signature"""
self._root = None
self._count = 0
if cmp is None:
def cmp(cmp_data, a, b):
if a < b:
return -1
elif a > b:
return 1
else:
return 0
self._cmp = cmp
self._cmp_data = cmp_data
def clear(self):
"""T.clear() -> None. Remove all items from T."""
def _clear(node):
if node is not None:
_clear(node.left)
_clear(node.right)
node.free()
_clear(self._root)
self._count = 0
self._root = None
@property
def count(self):
"""Get items count."""
return self._count
def _get_value_or_sentinel(self, key):
node = self._root
while node is not None:
cmp = self._cmp(self._cmp_data, key, node.key)
if cmp == 0:
return node.value
elif cmp < 0:
node = node.left
else:
node = node.right
return _sentinel
def get_value(self, key):
value = self._get_value_or_sentinel(key)
if value is _sentinel:
raise KeyError(str(key))
return value
def pop_item(self):
"""T.pop_item() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if T is empty.
"""
if self.is_empty():
raise KeyError("pop_item(): tree is empty")
node = self._root
while True:
if node.left is not None:
node = node.left
elif node.right is not None:
node = node.right
else:
break
key = node.key
value = node.value
self.remove(key)
return key, value
popitem = pop_item # for compatibility to dict()
def min_item(self):
"""Get item with min key of tree, raises ValueError if tree is empty."""
if self.is_empty():
raise ValueError("Tree is empty")
node = self._root
while node.left is not None:
node = node.left
return node.key, node.value
def max_item(self):
"""Get item with max key of tree, raises ValueError if tree is empty."""
if self.is_empty():
raise ValueError("Tree is empty")
node = self._root
while node.right is not None:
node = node.right
return node.key, node.value
def succ_item(self, key, default=_sentinel):
"""Get successor (k,v) pair of key, raises KeyError if key is max key
or key does not exist. optimized for pypy.
"""
# removed graingets version, because it was little slower on CPython and much slower on pypy
# this version runs about 4x faster with pypy than the Cython version
# Note: Code sharing of succ_item() and ceiling_item() is possible, but has always a speed penalty.
node = self._root
succ_node = None
while node is not None:
cmp = self._cmp(self._cmp_data, key, node.key)
if cmp == 0:
break
elif cmp < 0:
if (succ_node is None) or self._cmp(self._cmp_data, node.key, succ_node.key) < 0:
succ_node = node
node = node.left
else:
node = node.right
if node is None: # stay at dead end
if default is _sentinel:
raise KeyError(str(key))
return default
# found node of key
if node.right is not None:
# find smallest node of right subtree
node = node.right
while node.left is not None:
node = node.left
if succ_node is None:
succ_node = node
elif self._cmp(self._cmp_data, node.key, succ_node.key) < 0:
succ_node = node
elif succ_node is None: # given key is biggest in tree
if default is _sentinel:
raise KeyError(str(key))
return default
return succ_node.key, succ_node.value
def prev_item(self, key, default=_sentinel):
"""Get predecessor (k,v) pair of key, raises KeyError if key is min key
or key does not exist. optimized for pypy.
"""
# removed graingets version, because it was little slower on CPython and much slower on pypy
# this version runs about 4x faster with pypy than the Cython version
# Note: Code sharing of prev_item() and floor_item() is possible, but has always a speed penalty.
node = self._root
prev_node = None
while node is not None:
cmp = self._cmp(self._cmp_data, key, node.key)
if cmp == 0:
break
elif cmp < 0:
node = node.left
else:
if (prev_node is None) or self._cmp(self._cmp_data, prev_node.key, node.key) < 0:
prev_node = node
node = node.right
if node is None: # stay at dead end (None)
if default is _sentinel:
raise KeyError(str(key))
return default
# found node of key
if node.left is not None:
# find biggest node of left subtree
node = node.left
while node.right is not None:
node = node.right
if prev_node is None:
prev_node = node
elif self._cmp(self._cmp_data, prev_node.key, node.key) < 0:
prev_node = node
elif prev_node is None: # given key is smallest in tree
if default is _sentinel:
raise KeyError(str(key))
return default
return prev_node.key, prev_node.value
def __repr__(self):
"""T.__repr__(...) <==> repr(x)"""
tpl = "%s({%s})" % (self.__class__.__name__, '%s')
return tpl % ", ".join(("%r: %r" % item for item in self.items()))
def __contains__(self, key):
"""k in T -> True if T has a key k, else False"""
return self._get_value_or_sentinel(key) is not _sentinel
def __len__(self):
"""T.__len__() <==> len(x)"""
return self.count
def is_empty(self):
"""T.is_empty() -> False if T contains any items else True"""
return self.count == 0
def set_default(self, key, default=None):
"""T.set_default(k[,d]) -> T.get(k,d), also set T[k]=d if k not in T"""
value = self._get_value_or_sentinel(key)
if value is _sentinel:
self.insert(key, default)
return default
return value
setdefault = set_default # for compatibility to dict()
def get(self, key, default=None):
"""T.get(k[,d]) -> T[k] if k in T, else d. d defaults to None."""
value = self._get_value_or_sentinel(key)
if value is _sentinel:
return default
return value