Skip to content

Latest commit

 

History

History
65 lines (41 loc) · 2.48 KB

README.md

File metadata and controls

65 lines (41 loc) · 2.48 KB

Graph Neural Networks for Quantum Chemistry

Implementation and modification of Message Passing Neural Networks as explained in the article proposed by Gilmer et al. [1].

Requirements:

  • python 3.5
  • pytorch=0.1.12
  • networkx=1.11
  • tensorboard
  • tensorboard_logger
  • numpy
  • joblib

Setup

Using conda create command to create a conda environment.

$ module add anaconda3/4.2.0
$ conda create -n python-3.5 python=3.5
$ source activate python-3.5

Installation

$ pip install numpy tensorboard tensorboard_logger joblib
$ conda install -c rdkit rdkit 
$ conda install networkx=1.11
$ conda install pytorch=0.1.12 cuda75 -c soumith
$ git clone https://github.com/ifding/graph-neural-networks.git
$ cd graph-neural-networks

Examples

QM9

Download and convert QM9 data set:

$ python3 download_data.py qm9 -p /scratch3/feid/mpnn-data/

Train and test MPNN (default) and MPNNv2 model with GPU (default) or not:

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --model MPNNv2
    
$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda --model MPNNv2

$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --model MPNNv3
    
$ python3 main.py --datasetPath /scratch3/feid/mpnn-data/qm9/dsgdb9nsd/ --no-cuda --model MPNNv3

Bibliography