Skip to content

iitm-sysdl/SuperShaper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SuperShaper: Task-Agnostic Super Pre-Training of BERT models with Variable Hidden Dimensions [arXiv] [Slides] [Video]

This repository contains our PyTorch training code, evaluation code and pre-trained models for SuperShaper.

If you find this repo useful in your work, please consider citing our work:

Super Pre-training with bottleneck layers

Competitive NLU performance

Model Params MNLI-M QQP QNLI CoLA SST-2 STS-B RTE MRPC Average GLUE
LayerDrop 66M 80.7 88.3 88.4 45.4 90.7 - 65.2 85.9 77.8
DistilBERT 66M 82.2 88.5 89.2 51.3 91.3 86.9 59.9 87.5 79.6
BERT-PKD 66M 81.5 70.7 89.0 - 92.0 - 65.5 85.0 80.6
MiniLM 66M 84.0 91.0 91.0 49.2 92.0 - 71.5 88.4 81.0
Ta-TinyBERT 67M 83.5 90.6 90.5 42.8 91.6 86.5 72.2 88.4 80.8
Tiny-BERT 66M 84.6 89.1 90.4 51.1 93.1 83.7 70.0 82.6 80.6
BERT-of-Theseus 66M 82.3 89.6 89.5 51.1 91.5 88.7 68.2 - 80.1
PD-BERT 66M 82.5 90.7 89.4 - 91.1 - 66.7 84.9 84.2
ELM 60M 84.2 91.1 90.8 54.2 92.7 88.9 72.2 89.0 82.9
NAS-BERT 60M 83.3 90.9 91.3 55.6 92.0 88.6 78.5 87.5 83.5
DynaBERT 60M 84.2 91.2 91.5 56.8 92.7 89.2 72.2 84.1 82.8
YOCO-BERT 59M-67M 82.6 90.5 87.2 59.8 92.8 - 72.9 90.3 82.3
SuperShaper (ours) 63M 82.2 90.2 88.1 53.0 91.9 87.6 79.1 89.5 82.7

Evolutionary Search and Simple Heuristics finds best subnetworks

Shape is insensitive to device-latency

Quick Start

pip install -r requirements.txt

Install the required packages.

Usage

We use accelerate to train the transformers with no code changes on different setups (multi-gpu, TPU, etc)

Configure your training setup

accelerate config                                       # answer questions wrt your training setup (multi-gpu, tpu, fp16 etc)

accelerate config  --config_file <path to config>       # to create custom training setup for different tasks

Run the code with accelerate launch

accelerate launch train_mlm.py <args>

Pretraining on C4-realnews

Download the C4-realnews dataset from huggingface datasets following the instructions here.

accelerate launch train_mlm.py \
--per_device_train_batch_size 128 \
--per_device_eval_batch_size 256 \
--gradient_accumulation_steps 2 \
--fp16 1 \
--max_seq_length 128 \
--mixing bert-bottleneck \
--max_train_steps 175214 \
--tokenized_c4_dir <path to tokenized c4 realnews directory> \
--model_name_or_path bert-base-cased \
--sampling_type random \
--sampling_rule sandwich \
--learning_rate 5e-5 \
--weight_decay 0.0 \
--num_warmup_steps 0 \
--eval_random_subtransformers 1 \
--wandb_suffix <suffix>

To pretrain the supershaper backbone initialized with bert-base-cased model on C4-realnews dataset, we pre-tokenize the dataset and pass the correspinding path to --tokenized_c4_dir. You can also use the raw dataset and pass it with argument --c4_dir <path to c4 realnews dataset>.

To resume pretraining from a checkpoint, pass --resume_from_checkpoint_dir <path to checkpoint>

accelerate launch train_mlm.py \
--per_device_train_batch_size 128 \
--per_device_eval_batch_size 256 \
--gradient_accumulation_steps 2 \
--fp16 1 \
--max_seq_length 128 \
--mixing bert-bottleneck \
--max_train_steps 175214 \
--tokenized_c4_dir <path to tokenized c4 realnews directory> \
--model_name_or_path <model path> \
--sampling_type none \
--learning_rate 5e-5 \
--weight_decay 0.0 \
--num_warmup_steps 0 \
--eval_random_subtransformers 1 \
--subtransformer_config_path <path to subtransformer config> \
--wandb_suffix <suffix>

To train the supershaper subnetwork (a compressed model configuration with no sampling), use the --subtransformer_config_path argument. subtransformer_configs/bert-bottleneck folder contains different shape configrations discovered via evolutionary search/ heuristic method.

To further pretrain a subnetwork from supershaper checkpoint, use the --model_name_or_path and point to the checkpoint and set --subtransformer_config_path to the subnetwork configuration path. To pretrain the model from scratch without any checkpoint, use the --model_name_or_path as bert-base-cased.

List of arguments for train_mlm.py:

usage: train_mlm.py [-h] [--dataset_name DATASET_NAME]
                    [--dataset_config_name DATASET_CONFIG_NAME]
                    [--train_file TRAIN_FILE]
                    [--validation_file VALIDATION_FILE]
                    [--validation_split_percentage VALIDATION_SPLIT_PERCENTAGE]
                    [--pad_to_max_length]
                    [--model_name_or_path MODEL_NAME_OR_PATH]
                    [--config_name CONFIG_NAME]
                    [--tokenizer_name TOKENIZER_NAME] [--use_slow_tokenizer]
                    [--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
                    [--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
                    [--learning_rate LEARNING_RATE]
                    [--weight_decay WEIGHT_DECAY]
                    [--num_train_epochs NUM_TRAIN_EPOCHS]
                    [--max_train_steps MAX_TRAIN_STEPS]
                    [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
                    [--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup}]
                    [--num_warmup_steps NUM_WARMUP_STEPS]
                    [--output_dir OUTPUT_DIR] [--seed SEED]
                    [--model_type MODEL_TYPE] [--logging_steps LOGGING_STEPS]
                    [--max_seq_length MAX_SEQ_LENGTH]
                    [--line_by_line LINE_BY_LINE]
                    [--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
                    [--overwrite_cache OVERWRITE_CACHE]
                    [--mlm_probability MLM_PROBABILITY]
                    [--early_stopping_patience EARLY_STOPPING_PATIENCE]
                    [--layer_drop_prob LAYER_DROP_PROB]
                    [--eval_random_subtransformers EVAL_RANDOM_SUBTRANSFORMERS]
                    [--train_subtransformers_from_scratch TRAIN_SUBTRANSFORMERS_FROM_SCRATCH]
                    [--fp16 FP16] --mixing
                    {attention,gmlp,fnet,mobilebert,bert-bottleneck}
                    [--resume_from_checkpoint_dir RESUME_FROM_CHECKPOINT_DIR]
                    [--tiny_attn TINY_ATTN]
                    [--num_subtransformers_monitor NUM_SUBTRANSFORMERS_MONITOR]
                    [--c4_dir C4_DIR] [--tokenized_c4_dir TOKENIZED_C4_DIR]
                    [--sampling_type {none,naive_params,biased_params,random}]
                    [--sampling_rule {none,sandwich}] [--pop_size POP_SIZE]
                    --k_sampling K_SAMPLING
                    [--inplace_distillation INPLACE_DISTILLATION]
                    [--kd_ratio KD_RATIO]
                    [--layerwise_distillation LAYERWISE_DISTILLATION]
                    [--alpha_divergence ALPHA_DIVERGENCE]
                    [--alpha_min ALPHA_MIN] [--alpha_max ALPHA_MAX]
                    [--beta_clip BETA_CLIP]
                    [--subtransformer_config_path SUBTRANSFORMER_CONFIG_PATH]
                    [--rewire REWIRE]
                    [--rewired_model_checkpoint_dir REWIRED_MODEL_CHECKPOINT_DIR]
                    [--wandb_suffix WANDB_SUFFIX]
                    [--target_perplexity TARGET_PERPLEXITY]

Pretrain/Finetune a transformers model on a Masked Language Modeling task

optional arguments:
  -h, --help            show this help message and exit
  --dataset_name DATASET_NAME
                        The name of the dataset to use (via the datasets
                        library).
  --dataset_config_name DATASET_CONFIG_NAME
                        The configuration name of the dataset to use (via the
                        datasets library).
  --train_file TRAIN_FILE
                        A csv or a json file containing the training data.
  --validation_file VALIDATION_FILE
                        A csv or a json file containing the validation data.
  --validation_split_percentage VALIDATION_SPLIT_PERCENTAGE
                        The percentage of the train set used as validation set
                        in case there's no validation split
  --pad_to_max_length   If passed, pad all samples to `max_length`. Otherwise,
                        dynamic padding is used.
  --model_name_or_path MODEL_NAME_OR_PATH
                        Path to pretrained model or model identifier from
                        huggingface.co/models.
  --config_name CONFIG_NAME
                        Pretrained config name or path if not the same as
                        model_name
  --tokenizer_name TOKENIZER_NAME
                        Pretrained tokenizer name or path if not the same as
                        model_name
  --use_slow_tokenizer  If passed, will use a slow tokenizer (not backed by
                        the 🤗 Tokenizers library).
  --per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
                        Batch size (per device) for the training dataloader.
  --per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
                        Batch size (per device) for the evaluation dataloader.
  --learning_rate LEARNING_RATE
                        Initial learning rate (after the potential warmup
                        period) to use.
  --weight_decay WEIGHT_DECAY
                        Weight decay to use.
  --num_train_epochs NUM_TRAIN_EPOCHS
                        Total number of training epochs to perform.
  --max_train_steps MAX_TRAIN_STEPS
                        Total number of training steps to perform. If
                        provided, overrides num_train_epochs.
  --gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
                        Number of updates steps to accumulate before
                        performing a backward/update pass.
  --lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup}
                        The scheduler type to use.
  --num_warmup_steps NUM_WARMUP_STEPS
                        Number of steps for the warmup in the lr scheduler.
  --output_dir OUTPUT_DIR
                        Where to store the final model.
  --seed SEED           A seed for reproducible training.
  --model_type MODEL_TYPE
                        Model type to use if training from scratch.
  --logging_steps LOGGING_STEPS
                        Log every X updates steps.
  --max_seq_length MAX_SEQ_LENGTH
                        The maximum total input sequence length after
                        tokenization. Sequences longer than this will be
                        truncated.
  --line_by_line LINE_BY_LINE
                        Whether distinct lines of text in the dataset are to
                        be handled as distinct sequences. This is deafult for
                        bert/electra models and should be set to False for
                        gpt/gpt2 type models
  --preprocessing_num_workers PREPROCESSING_NUM_WORKERS
                        The number of processes to use for the preprocessing.
  --overwrite_cache OVERWRITE_CACHE
                        Overwrite the cached training and evaluation sets
  --mlm_probability MLM_PROBABILITY
                        Ratio of tokens to mask for masked language modeling
                        loss
  --early_stopping_patience EARLY_STOPPING_PATIENCE
                        Patience for early stopping to stop training if
                        val_acc doesnt converge
  --layer_drop_prob LAYER_DROP_PROB
                        Probability to drop layers
  --eval_random_subtransformers EVAL_RANDOM_SUBTRANSFORMERS
                        If set to 1, this will evaluate 25 random
                        subtransformers after every training epoch when
                        training a supertransformer
  --train_subtransformers_from_scratch TRAIN_SUBTRANSFORMERS_FROM_SCRATCH
                        If set to 1, this will train 25 random subtransformers
                        from scratch. By default, it is set to False (0) and
                        we train a supertransformer and finetune
                        subtransformers
  --fp16 FP16           If set to 1, will use FP16 training.
  --mixing {attention,gmlp,fnet,mobilebert,bert-bottleneck}
                        specifies how to mix the tokens in bert-layers
  --resume_from_checkpoint_dir RESUME_FROM_CHECKPOINT_DIR
                        directory that contains checkpoints, optimizer,
                        scheduler to resume training
  --tiny_attn TINY_ATTN
                        Choose this if you need Tiny Attention Module along-
                        with gMLP dense block
  --num_subtransformers_monitor NUM_SUBTRANSFORMERS_MONITOR
                        Choose the number of subtransformers whose performance
                        you wish to monitor
  --c4_dir C4_DIR       The directory path for C4
  --tokenized_c4_dir TOKENIZED_C4_DIR
                        The directory path for tokenized C4
  --sampling_type {none,naive_params,biased_params,random}
                        The sampling type for super-transformer
  --sampling_rule {none,sandwich}
                        The sampling rule for sampling super-transformers
  --pop_size POP_SIZE   Number of random subtransformers to sample at each
                        step
  --k_sampling K_SAMPLING
                        The step frequency of sampling a sub-transformers
  --inplace_distillation INPLACE_DISTILLATION
                        Whether to use inplace distillation
  --kd_ratio KD_RATIO   Sensitizes the amount of KD-loss that needs to be
                        added with existing loss
  --layerwise_distillation LAYERWISE_DISTILLATION
                        Conditional layerwise attention and feature map
                        transfer for in-place distillation
  --alpha_divergence ALPHA_DIVERGENCE
                        Enable Alpha Divergence KL loss
  --alpha_min ALPHA_MIN
                        Alpha min value
  --alpha_max ALPHA_MAX
                        Alpha max value
  --beta_clip BETA_CLIP
                        The clip value for alpha divergence
  --subtransformer_config_path SUBTRANSFORMER_CONFIG_PATH
                        The path to a subtransformer configration
  --rewire REWIRE       Whether to rewire model
  --rewired_model_checkpoint_dir REWIRED_MODEL_CHECKPOINT_DIR
                        Path to rewired model checkpoint
  --wandb_suffix WANDB_SUFFIX
                        suffix for wandb
  --target_perplexity TARGET_PERPLEXITY
                        perplexity to stop further pretraining

Finetuning on GLUE

accelerate launch train_glue.py \
--learning_rate=1e-05 \
--mixing=bert-bottleneck \
--model_name_or_path=<path to pretrained checkcpoint> \
--num_train_epochs=10 \
--per_device_train_batch_size=32 \
--sampling_type=none \
--task={cola,mnli,mrpc,qnli,qqp,rte,sst2,stsb,wnli} \
--wandb_suffix <suffix> \
--subtransformer_config_path <path to subtransformer config file>

^ Use this command to finetune on the GLUE benchmark.

For MRPC, STS-B and RTE we start finetuning using the mnli checkpoint as follows:

accelerate launch train_glue.py \
--learning_rate=1e-05 \
--mixing=bert-bottleneck \
--model_name_or_path=<path to mnli checkcpoint> \
--num_train_epochs=10 \
--per_device_train_batch_size=32 \
--is_mnli_checkpoint 1 \
--sampling_type=none \
--task={mrpc,rte,stsb} \
--wandb_suffix <suffix> \
--subtransformer_config_path <path to subtransformer config file>

List of arguments for train_glue.py:

usage: train_glue.py [-h]
                     [--task_name {cola,mnli,mrpc,qnli,qqp,rte,sst2,stsb,wnli}]
                     [--train_file TRAIN_FILE]
                     [--validation_file VALIDATION_FILE]
                     [--max_length MAX_LENGTH] [--pad_to_max_length]
                     [--model_name_or_path MODEL_NAME_OR_PATH]
                     [--use_slow_tokenizer]
                     [--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
                     [--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
                     [--learning_rate LEARNING_RATE]
                     [--weight_decay WEIGHT_DECAY]
                     [--num_train_epochs NUM_TRAIN_EPOCHS]
                     [--max_train_steps MAX_TRAIN_STEPS]
                     [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
                     [--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup}]
                     [--num_warmup_steps NUM_WARMUP_STEPS]
                     [--output_dir OUTPUT_DIR] [--seed SEED]
                     [--early_stopping_patience EARLY_STOPPING_PATIENCE]
                     [--eval_random_subtransformers EVAL_RANDOM_SUBTRANSFORMERS]
                     [--train_subtransformers_from_scratch TRAIN_SUBTRANSFORMERS_FROM_SCRATCH]
                     [--fp16 FP16] --mixing
                     {attention,gmlp,fnet,mobilebert,bert-bottleneck}
                     [--rewire REWIRE]
                     [--resume_from_checkpoint_dir RESUME_FROM_CHECKPOINT_DIR]
                     [--tiny_attn TINY_ATTN]
                     [--num_subtransformers_monitor NUM_SUBTRANSFORMERS_MONITOR]
                     [--debug]
                     [--sampling_type {none,naive_params,biased_params,random}]
                     [--subtransformer_config_path SUBTRANSFORMER_CONFIG_PATH]
                     [--wandb_suffix WANDB_SUFFIX]
                     [--is_mnli_checkpoint IS_MNLI_CHECKPOINT]
                     [--aug_train_file AUG_TRAIN_FILE]

Finetune a transformers model on a text classification task

optional arguments:
  -h, --help            show this help message and exit
  --task_name {cola,mnli,mrpc,qnli,qqp,rte,sst2,stsb,wnli}
                        The name of the glue task to train on.
  --train_file TRAIN_FILE
                        A csv or a json file containing the training data.
  --validation_file VALIDATION_FILE
                        A csv or a json file containing the validation data.
  --max_length MAX_LENGTH
                        The maximum total input sequence length after
                        tokenization. Sequences longer than this will be
                        truncated, sequences shorter will be padded if
                        `--pad_to_max_lengh` is passed.
  --pad_to_max_length   If passed, pad all samples to `max_length`. Otherwise,
                        dynamic padding is used.
  --model_name_or_path MODEL_NAME_OR_PATH
                        Path to pretrained model or model identifier from huggingface.co/models.
  --use_slow_tokenizer  If passed, will use a slow tokenizer (not backed by
                        the 🤗 Tokenizers library).
  --per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
                        Batch size (per device) for the training dataloader.
  --per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
                        Batch size (per device) for the evaluation dataloader.
  --learning_rate LEARNING_RATE
                        Initial learning rate (after the potential warmup
                        period) to use.
  --weight_decay WEIGHT_DECAY
                        Weight decay to use.
  --num_train_epochs NUM_TRAIN_EPOCHS
                        Total number of training epochs to perform.
  --max_train_steps MAX_TRAIN_STEPS
                        Total number of training steps to perform. If
                        provided, overrides num_train_epochs.
  --gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
                        Number of updates steps to accumulate before
                        performing a backward/update pass.
  --lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup}
                        The scheduler type to use.
  --num_warmup_steps NUM_WARMUP_STEPS
                        Number of steps for the warmup in the lr scheduler.
  --output_dir OUTPUT_DIR
                        Where to store the final model.
  --seed SEED           A seed for reproducible training.
  --early_stopping_patience EARLY_STOPPING_PATIENCE
                        Patience for early stopping to stop training if
                        val_acc doesnt converge
  --eval_random_subtransformers EVAL_RANDOM_SUBTRANSFORMERS
                        If set to 1, this will evaluate 25 random
                        subtransformers after every training epoch when
                        training a supertransformer
  --train_subtransformers_from_scratch TRAIN_SUBTRANSFORMERS_FROM_SCRATCH
                        If set to 1, this will train 25 random subtransformers
                        from scratch. By default, it is set to False (0) and
                        we train a supertransformer and finetune
                        subtransformers
  --fp16 FP16           If set to 1, will use FP16 training.
  --mixing {attention,gmlp,fnet,mobilebert,bert-bottleneck}
                        specifies how to mix the tokens in bertlayers
  --rewire REWIRE       Whether to rewire model
  --resume_from_checkpoint_dir RESUME_FROM_CHECKPOINT_DIR
                        directory that contains checkpoints, optimizer,
                        scheduler to resume training
  --tiny_attn TINY_ATTN
                        Choose this if you need Tiny Attention Module along-
                        with gMLP dense block
  --num_subtransformers_monitor NUM_SUBTRANSFORMERS_MONITOR
                        Choose the number of subtransformers whose performance
                        you wish to monitor
  --debug               If passed, use 100 samples of dataset to quickly run
                        and check code.
  --sampling_type {none,naive_params,biased_params,random}
                        The sampling type for super-transformer
  --subtransformer_config_path SUBTRANSFORMER_CONFIG_PATH
                        The path to a subtransformer configration
  --wandb_suffix WANDB_SUFFIX
                        suffix for wandb
  --is_mnli_checkpoint IS_MNLI_CHECKPOINT
                        if model path is a pretrained mnli checkpoint
  --aug_train_file AUG_TRAIN_FILE
                        path to augmented train file

Building Latency and Perplexity Predictors

We build perplexity and latency predictors to aid evolutionary search for faster fitness computation and constraining populations. An example to learn a latency predictor for a hardware is given below

cd search
PYTHONPATH=$PYTHONPATH:../ python predictor.py --input_file_name_or_path latency_data/k80/k80_latencies_seed42_bs128.csv --model_type xgb --output_file_name_or_path k80 --prediction_type latency

List of arguments for predictor.py:

usage: predictor.py [-h] --input_file_name_or_path INPUT_FILE_NAME_OR_PATH
                         --prediction_type PREDICTION_TYPE
                         [--model_type MODEL_TYPE]
                         --output_file_name_or_path OUTPUT_FILE_NAME_OR_PATH
                         [--plot PLOT]

optional arguments:
  -h, --help            show this help message and exit
  --input_file_name_or_path INPUT_FILE_NAME_OR_PATH
                        The file name of the output
  --prediction_type PREDICTION_TYPE
                        The name of the dataset to use (via the datasets library).
  --model_type MODEL_TYPE
                        The type of cost model used. Options [xgb, lgbm]
  --output_file_name_or_path OUTPUT_FILE_NAME_OR_PATH
                        Path to store the learnt model
  --plot PLOT

Evolutionary Search

An example to perform evolutionary search with perplexity constraints of 6 and latency constraints of 500ms is given below. Similarly, parameter constraints can also be provided using the appropriate flags shown in usage.

cd search
PYTHONPATH=$PYTHONPATH:../ python evolution.py --perplexity_model_file_name_or_path outputs/perplexity_predictor.xgb --latency_model_file_name_or_path ./outputs/latency_predictors/1080Ti_latency_predictor.xgb --latency_constraints 0.5 --perplexity constraints 6 --model_type xgb

List of arguments for evolution.py:

usage: evolution.py [-h] [--perplexity_model_file_name_or_path PERPLEXITY_MODEL_FILE_NAME_OR_PATH]
                    [--latency_model_file_name_or_path LATENCY_MODEL_FILE_NAME_OR_PATH]
                    [--task TASK]
                    [--population_size POPULATION_SIZE]
                    [--parent_size PARENT_SIZE]
                    [--mutation_size MUTATION_SIZE]
                    [--crossover_size CROSSOVER_SIZE]
                    [--mutation_prob MUTATION_PROB]
                    [--time_budget TIME_BUDGET]
                    [--search_space_config SEARCH_SPACE_CONFIG]
                    [--params_constraints PARAMS_CONSTRAINTS]
                    [--latency_constraints LATENCY_CONSTRAINTS]
                    [--perplexity_constraints PERPLEXITY_CONSTRAINTS]
                    [--model_type MODEL_TYPE]
                    --device_type DEVICE_TYPE
optional arguments:
 -h, --help            show this help message and exit
  --perplexity_model_file_name_or_path PERPLEXITY_MODEL_FILE_NAME_OR_PATH
                        Path to load the predictor model
  --latency_model_file_name_or_path LATENCY_MODEL_FILE_NAME_OR_PATH
                        Path to load the latency model
  --task TASK           Task for evo-search
  --population_size POPULATION_SIZE
                        Population Size for Evo-Search
  --parent_size PARENT_SIZE
                        Parent Size
  --mutation_size MUTATION_SIZE
                        Mutation Size
  --crossover_size CROSSOVER_SIZE
                        Crossover Size
  --mutation_prob MUTATION_PROB
                        Mutation Probability
  --time_budget TIME_BUDGET
                        Max Time budget for Evolutionary Search
  --search_space_config SEARCH_SPACE_CONFIG
                        Search Space to use
  --params_constraints PARAMS_CONSTRAINTS
                        Constraints on Parameters
  --latency_constraints LATENCY_CONSTRAINTS
                        Constraints on Latency in seconds
  --perplexity_constraints PERPLEXITY_CONSTRAINTS
                        Constraints on Perplexity
  --model_type MODEL_TYPE
                        Cost model type
  --device_type DEVICE_TYPE
                        Device Type for outputs

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages