-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmatplotdemo.py
77 lines (57 loc) · 2.19 KB
/
matplotdemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects
import json
with open('mountains.json', encoding="utf-8") as data_file:
mountains = json.load(data_file)
# Utility function to extract data from country objects.
def extract(obj, field, default=0):
try:
e = int(obj[field].split(' ')[0])
except ValueError:
e = default
return e
# Heights of the world's mountains.
hts = np.array([extract(m, "Elevation") for m in mountains])
# Histogram plot of mountain heights.
with plt.xkcd(): # Cueball: "Why?" Black hat: "Why not?"
plt.hist(hts, 20, facecolor='cyan', alpha=0.75)
plt.figure(1)
print("Histogram of the heights of named mountains.")
plt.xlabel("Mountain height")
plt.ylabel("Mountain count")
plt.show()
# Ordinary data plot of mountain heights.
plt.figure(2)
pef = [path_effects.SimpleLineShadow(), path_effects.Normal()]
plt.plot(np.sort(hts), '-', path_effects=pef)
print("Heights of the mountains of the world.")
plt.show()
with open('countries.json', encoding="utf-8") as data_file:
countries = json.load(data_file)
pops = np.array([extract(c, "Population") for c in countries])
gdp = np.array([extract(c, "GDP") for c in countries])
gdppc = gdp / pops
pops_log = np.log(pops) / np.log(10)
# Scatter plot of population against GDP per person.
plt.figure(3)
plt.autoscale(enable=True, axis='x', tight=False)
plt.scatter(pops_log, gdppc, c='g', marker='.')
plt.xlabel('Population ($10^k$)') # LaTeX-style math markup
plt.ylabel('GDP / person')
plt.show()
print("Scatterplot of countries GDP/Person and population.")
# Compute the total population of each continent.
continental_pops = {}
for country in countries:
name, continent = country['Name'], country['Continent']
pop = extract(country, 'Population', 0)
continental_pops[continent] = continental_pops.get(continent, 0) + pop
keys = continental_pops.keys()
cp = np.array([continental_pops[continent] for continent in keys])
# Pie plot of continental populations.
plt.figure(4)
plt.pie(cp, labels=keys, explode=[0, 0, .1, -.1, 0, .3])
print("Portion of world's population in each continent.")
plt.show()
# plt.savefig("continental_pie.svg")