-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathindex.js
378 lines (326 loc) · 10.9 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
const chroma = require("chroma-js");
const targetColors = [
"#4269d0",
"#efb118",
"#ff725c",
"#6cc5b0",
"#3ca951",
"#ff8ab7",
"#a463f2",
"#97bbf5",
"#9c6b4e",
"#9498a0",
];
const avoidColors = ["#FF0000", "#000000"];
const providedColors = [
"#4269d0",
"#efb118",
"#ff725c",
"#6cc5b0",
"#3ca951",
"#ff8ab7",
"#a463f2",
"#97bbf5",
"#9c6b4e",
"#9498a0",
];
const fixedColors = 0;
const backgroundColor = "#ffffff";
// random from array
const randomFromArray = (array) => {
return array[Math.floor(Math.random() * array.length)];
};
// generate a random color
const randomColor = () => {
const color = chroma.random();
return color;
};
// measures the distance between two colors
const distance = (color1, color2) => chroma.deltaE(color1, color2);
const getClosestColor = (color, colorArray) => {
const distances = colorArray.map((c) => distance(color, c));
const minIndex = distances.indexOf(Math.min(...distances));
return colorArray[minIndex];
};
// array of distances between all points in a color array
const distances = (colorArray, visionSpace = "Normal") => {
const distances = [];
const convertedColors = colorArray.map((c) =>
brettelFunctions[visionSpace](c.rgb())
);
for (let i = 0; i < colorArray.length; i++) {
for (let j = i + 1; j < colorArray.length; j++) {
distances.push(distance(convertedColors[i], convertedColors[j]));
}
}
return distances;
};
// get average of interger array
const average = (array) => array.reduce((a, b) => a + b) / array.length;
// get the distance between the highest and lowest values in an array
const range = (array) => {
const sorted = array.sort((a, b) => a - b);
return sorted[sorted.length - 1] - sorted[0];
};
// produces a color a small random distance away from the given color
const randomNearbyColor = (color) => {
const channelToChange = randomFromArray([0, 1, 2]);
const oldVal = color.gl()[channelToChange];
let newVal = oldVal + Math.random() * 0.1 - 0.05;
if (newVal > 1) {
newVal = 1;
} else if (newVal < 0) {
newVal = 0;
}
return color.set(`rgb.${"rgb"[channelToChange]}`, newVal * 255);
};
// average of distances between array of colors and given colors
const averageDistanceFromColors = (testColors, givenColors) => {
const distances = testColors.map((c) =>
distance(c, getClosestColor(c, givenColors))
);
return average(distances);
};
// maximum distance between array of colors and given colors
const maxDistanceFromColors = (testColors, givenColors) => {
const distances = testColors.map((c) =>
distance(c, getClosestColor(c, givenColors))
);
return Math.max(...distances);
};
const minDistanceFromColors = (testColors, givenColors) => {
const distances = testColors.map((c) =>
distance(c, getClosestColor(c, givenColors))
);
return Math.min(...distances);
};
// Bretel et al method for simulating color vision deficiency
// Adapted from https://github.com/MaPePeR/jsColorblindSimulator
// In turn adapted from libDaltonLens https://daltonlens.org (public domain)
// convert a linear rgb value to sRGB
const linearRGB_from_sRGB = (v) => {
var fv = v / 255.0;
if (fv < 0.04045) return fv / 12.92;
return Math.pow((fv + 0.055) / 1.055, 2.4);
};
const sRGB_from_linearRGB = (v) => {
if (v <= 0) return 0;
if (v >= 1) return 255;
if (v < 0.0031308) return 0.5 + v * 12.92 * 255;
return 0 + 255 * (Math.pow(v, 1.0 / 2.4) * 1.055 - 0.055);
};
const brettelFunctions = {
Normal: function (v) {
return v;
},
Protanopia: function (v) {
return brettel(v, "protan", 1.0);
},
Protanomaly: function (v) {
return brettel(v, "protan", 0.6);
},
Deuteranopia: function (v) {
return brettel(v, "deutan", 1.0);
},
Deuteranomaly: function (v) {
return brettel(v, "deutan", 0.6);
},
Tritanopia: function (v) {
return brettel(v, "tritan", 1.0);
},
Tritanomaly: function (v) {
return brettel(v, "tritan", 0.6);
},
Achromatopsia: function (v) {
return monochrome_with_severity(v, 1.0);
},
Achromatomaly: function (v) {
return monochrome_with_severity(v, 0.6);
},
};
var sRGB_to_linearRGB_Lookup = Array(256);
(function () {
var i;
for (i = 0; i < 256; i++) {
sRGB_to_linearRGB_Lookup[i] = linearRGB_from_sRGB(i);
}
})();
brettel_params = {
protan: {
rgbCvdFromRgb_1: [
0.1451, 1.20165, -0.34675, 0.10447, 0.85316, 0.04237, 0.00429, -0.00603,
1.00174,
],
rgbCvdFromRgb_2: [
0.14115, 1.16782, -0.30897, 0.10495, 0.8573, 0.03776, 0.00431, -0.00586,
1.00155,
],
separationPlaneNormal: [0.00048, 0.00416, -0.00464],
},
deutan: {
rgbCvdFromRgb_1: [
0.36198, 0.86755, -0.22953, 0.26099, 0.64512, 0.09389, -0.01975, 0.02686,
0.99289,
],
rgbCvdFromRgb_2: [
0.37009, 0.8854, -0.25549, 0.25767, 0.63782, 0.10451, -0.0195, 0.02741,
0.99209,
],
separationPlaneNormal: [-0.00293, -0.00645, 0.00938],
},
tritan: {
rgbCvdFromRgb_1: [
1.01354, 0.14268, -0.15622, -0.01181, 0.87561, 0.13619, 0.07707, 0.81208,
0.11085,
],
rgbCvdFromRgb_2: [
0.93337, 0.19999, -0.13336, 0.05809, 0.82565, 0.11626, -0.37923, 1.13825,
0.24098,
],
separationPlaneNormal: [0.0396, -0.02831, -0.01129],
},
};
function brettel(srgb, t, severity) {
// Go from sRGB to linearRGB
var rgb = Array(3);
rgb[0] = sRGB_to_linearRGB_Lookup[srgb[0]];
rgb[1] = sRGB_to_linearRGB_Lookup[srgb[1]];
rgb[2] = sRGB_to_linearRGB_Lookup[srgb[2]];
var params = brettel_params[t];
var separationPlaneNormal = params["separationPlaneNormal"];
var rgbCvdFromRgb_1 = params["rgbCvdFromRgb_1"];
var rgbCvdFromRgb_2 = params["rgbCvdFromRgb_2"];
// Check on which plane we should project by comparing wih the separation plane normal.
var dotWithSepPlane =
rgb[0] * separationPlaneNormal[0] +
rgb[1] * separationPlaneNormal[1] +
rgb[2] * separationPlaneNormal[2];
var rgbCvdFromRgb = dotWithSepPlane >= 0 ? rgbCvdFromRgb_1 : rgbCvdFromRgb_2;
// Transform to the full dichromat projection plane.
var rgb_cvd = Array(3);
rgb_cvd[0] =
rgbCvdFromRgb[0] * rgb[0] +
rgbCvdFromRgb[1] * rgb[1] +
rgbCvdFromRgb[2] * rgb[2];
rgb_cvd[1] =
rgbCvdFromRgb[3] * rgb[0] +
rgbCvdFromRgb[4] * rgb[1] +
rgbCvdFromRgb[5] * rgb[2];
rgb_cvd[2] =
rgbCvdFromRgb[6] * rgb[0] +
rgbCvdFromRgb[7] * rgb[1] +
rgbCvdFromRgb[8] * rgb[2];
// Apply the severity factor as a linear interpolation.
// It's the same to do it in the RGB space or in the LMS
// space since it's a linear transform.
rgb_cvd[0] = rgb_cvd[0] * severity + rgb[0] * (1.0 - severity);
rgb_cvd[1] = rgb_cvd[1] * severity + rgb[1] * (1.0 - severity);
rgb_cvd[2] = rgb_cvd[2] * severity + rgb[2] * (1.0 - severity);
// Go back to sRGB
return [
sRGB_from_linearRGB(rgb_cvd[0]),
sRGB_from_linearRGB(rgb_cvd[1]),
sRGB_from_linearRGB(rgb_cvd[2]),
];
}
// Adjusted from the hcirn code
function monochrome_with_severity(srgb, severity) {
var z = Math.round(srgb[0] * 0.299 + srgb[1] * 0.587 + srgb[2] * 0.114);
var r = z * severity + (1.0 - severity) * srgb[0];
var g = z * severity + (1.0 - severity) * srgb[1];
var b = z * severity + (1.0 - severity) * srgb[2];
return [r, g, b];
}
// Cost function including weights
const cost = (state) => {
const energyWeight = 1.25;
const rangeWeight = 1;
const targetWeight = 0.75;
const avoidWeight = 0.5;
const contrastWeight = 0.25;
const protanopiaWeight = 0.1;
const protanomalyWeight = 0.1;
const deuteranopiaWeight = 0.1;
const deuteranomalyWeight = 0.5;
const tritanopiaWeight = 0.05;
const tritanomalyWeight = 0.05;
const normalDistances = distances(state);
const protanopiaDistances = distances(state, "Protanopia");
const protanomalyDistances = distances(state, "Protanomaly");
const deuteranopiaDistances = distances(state, "Deuteranopia");
const deuteranomalyDistances = distances(state, "Deuteranomaly");
const tritanopiaDistances = distances(state, "Tritanopia");
const tritanomalyDistances = distances(state, "Tritanomaly");
const energyScore = 100 - average(normalDistances);
const rangeScore = range(normalDistances);
const targetScore = targetColors.length ? averageDistanceFromColors(state, targetColors) : 0;
const avoidScore = avoidColors.length ? 100 - minDistanceFromColors(state, avoidColors) : 0;
const protanopiaScore = 100 - average(protanopiaDistances);
const protanomalyScore = 100 - average(protanomalyDistances);
const deuteranopiaScore = 100 - average(deuteranopiaDistances);
const deuteranomalyScore = 100 - average(deuteranomalyDistances);
const tritanopiaScore = 100 - average(tritanopiaDistances);
const triatanomalyScore = 100 - average(tritanomalyDistances);
const maxPossibleContrast = 21; // Theoretical maximum contrast ratio in WCAG
const minContrast = state.reduce(
(acc, color) => Math.min(chroma.contrast(color, backgroundColor), acc),
maxPossibleContrast
);
const contrastScore = 100 - (minContrast / maxPossibleContrast) * 100;
return (
energyWeight * energyScore +
targetWeight * targetScore +
rangeWeight * rangeScore +
avoidWeight * avoidScore +
protanopiaWeight * protanopiaScore +
protanomalyWeight * protanomalyScore +
deuteranopiaWeight * deuteranopiaScore +
deuteranomalyWeight * deuteranomalyScore +
tritanopiaWeight * tritanopiaScore +
tritanomalyWeight * tritanopiaScore +
contrastWeight * contrastScore
);
};
// the simulated annealing algorithm
const optimize = (n = 5) => {
const colors = [];
providedColors.forEach((color) => colors.push(chroma(color)));
for (let i = fixedColors + providedColors.length; i < n; i++) {
colors.push(randomColor());
}
const startColors = Array.from(colors);
const startCost = cost(startColors);
// intialize hyperparameters
let temperature = 1000;
const coolingRate = 0.99;
const cutoff = 0.0001;
// iteration loop
while (temperature > cutoff) {
// for each color
for (let i = fixedColors; i < colors.length; i++) {
// copy old colors
const newColors = colors.map((color) => color);
// move the current color randomly
newColors[i] = randomNearbyColor(newColors[i]);
// choose between the current state and the new state
// based on the difference between the two, the temperature
// of the algorithm, and some random chance
const delta = cost(newColors) - cost(colors);
const probability = Math.exp(-delta / temperature);
if (Math.random() < probability) {
colors[i] = newColors[i];
}
}
console.log(`Current cost: ${cost(colors)}`);
// decrease temperature
temperature *= coolingRate;
}
console.log(`
Start colors: ${startColors.map((color) => color.hex())}
Start cost: ${startCost}
Final colors: ${colors.reduce((acc, color) => acc + `"${color.hex()}" `, "")}
Final cost: ${cost(colors)}
Cost difference: ${cost(colors) - startCost}`);
return colors;
};
optimize(10);